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Antisense approach

Malignant glioma, the most common human brain cancer, is
almost uniformly fatal. Median survival is less than one year. The
principal strategies of gene therapy for treatment of gliomas, includ-
ing antisense approach, have been proposed comming from 1990s
[1, 2, 3, 4].

The antisense oligonucleotides become the important tool of
anti - cancer approach [5, 6]. The "discovery" of antisense approach
was done by the groupes of R.M. Harland and of F. Jacob [7, 8]; the
untranscribed DNA strand, that has been regarded only as a stabi-
lizer and a protector of genetic material, was shown to reveal tran-
scription activity [9]. It has also been widely proven that a lot of
genes present an open reading frame on its antisense strand. Open
reading frame on the antisense strand has been found in all genomes
studied, both in prokaryotes and eukaryotes [10].

Different molecular pathways altered in cancer were exploited
as potential the antisense strand has been found in all genomes stud-
ied, both in prokaryotes and eukaryotes [10]. On the basis of mech-
anism of action, two classes of antisense oligonucleotide can be dis-
cerned: (a) the RNase H-dependent oligonucleotides, which induce
the degradation of mRNA; and (b) the steric-blocker oligonu-
cleotides, which physically prevent or inhibit the progression of
splicing or the translational machinery. The majority of the antisense
drugs investigated in the clinic functions via an RNase H-dependent
mechanism [5].

In prokaryotes and eukaryotes genetic information is supported
by double-stranded DNA in which only one strand (sense strand) is

usually transcribed to messenger RNA. The second strand is called
the antisense strand because its sequence of nucleotides is the com-
plement of message sense. This observation gave the origin to many
antisense (as well as non-sense) approaches based on antisense
RNA or antisense oligonucleotides, both targeting genes involved in
pathological cellular processes. The antisense RNA is delivered to
the cells either by a plasmid vector (dsDNA) encoding an antisense
RNA or by a single sequence of nucleotides is the complement of
message sense). The antisense RNA sequence is then produced by
intracellular transcription of plasmid vector and is able to hybridize
to the mRNAwith subsequent translation blockade. Once hybridiza-
tion occurs, the duplex RNA-RNA (DNA) stimulates ribonuclease
H, the enzyme involved in DNA replication [11].

The first antisense oligonucleotide used in clinical pharmacolo-
gy was as anti-cytomegalovirus therapy (VitraveneTM) [12]. The
antisense strategy was then largely used in order to analyze gene
expression and intron splicing. The most widely studied oligonu-
cleotides are phosphorothioates, because their nuclease stability are
highly soluble and have excellent antisense activity. These data have
led to the introduction of phosphorothioate oligonucleotides into
clinical therapeutic tumour trials [13, 14]. 

The triple helix (TH) technology is the new approach, which
belongs together with antisense approach to anti-gene strategies.
The TH technology was "discovered" by groups of P.B. Dervan
[15] and of C. Helene [16]. So called triple-helix forming
oligonucleotides, TFOs, are delivered to cells both by cell trans-
fection with chemical carriers and via vector plasmid that can
drive the synthesis of TFO RNA. TFOs link to genomic double-
strand DNA, form triple-helix structure with target gene and
strongly inhibit its expression at transcriptional level [15]. The
role of 22-23 mer RNA in triple helix RNA-DNA mechanism is
strongly similar to that of recent "siRNA technonology" involv-
ing also 23 mer RNA [16] (21-23-mer double-stranded RNA
molecules, known as siRNA, can effectively silence gene
expression [17]). 

Oncogenes and genes encoding growth factors constitute the
principal target of antisense strategy in malignant tumours treat-
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ment. The classical examples of use of antisense oncogens are
that of c myb [18], bcr/abl [11], bcl-2 [19, 20, 21] or K-ras fam-
ily [22], the last also explored in triple helix approach [23].
Growth factors and their receptors (that usually act as cell mem-
brane tyrosine kinases) consist the complex system considered at
present as especially important in oncogenesis. TGF-beta [24],
EGFR [22, 25], VEGF [26, 27, 28, 29] represent relevant targets
for anti-tumor gene therapies. Insulin-like growth factor (IGF-I)
and its receptor IGF-I-R are considered as the most important
growth factors related to the normal and neoplastic differentia-
tion [30]. Therefor IGF-I antisense and IGF-I-R antisense gene
therapies were proposed to treat different malignant tumours [3,
31]. 

Brain tumours and antisense approach

Neuroblastoma is the most common neuroectoderma derived
solid tumour of paediatric age. C-myb gene expression has been
reported in neuroblastoma. The use of antisense oligonucleotides
as therapeutic antineoplastic agents has been recently investiga-
ted. It was demonstrated that the inhibition of cell proliferation
was dependent on the down-modulation of c-myb protein
expression [32].

Dysregulation of hMYCN protein expression appears to be
critically involved in the pathogenesis of childhood neuroblas-
toma. Human neuroblastoma IMR-32 cells, which have an
amplified hMYCN gene was transfected, with hMYCN AS [33].
The authors have examined the effects of continuous treatment
for 6 weeks with AS oligonucleotides via subcutaneously
implanted microosmotic pumps on tumor growth in a transgenic
mouse model of hMYCN-induced neuroblastoma. Transgenic
mice treated with AS oligonucleotides had lower tumor inci-
dence and statistically significantly lower tumor mass.

Liposomes are one of the most promising delivery systems
for genes, proteins, and other biological molecules and they are
expected to become a new therapeutic tool for the treatment of
brain tumors, especially malignant gliomas [34]. Recently, the
promising results were showed using the strategy based on IGF-
I antisense or triple-helix technologies and liposomes as delivery
system for treatment of glioblastoma patients [35, 36]. The triple
helix of IGF-I consists with single RNA strand containing a 23-
nucleotide (nt) oligopurine sequence capable to form triple-helix
structure with an IGF-I gene oligopurine/oligopyrimidine pro-
moter segment. The injected triple helix IGF-I "vaccine" has
developed T CD8 mediated immune response [37]. The interest-
ing approach was also proposed by the group of R. Baserga,
using antisense of IGF-I receptor 1 in clinical treatment of brain
tumours (2003, personal communication); however the supposed
anti-cancer immune response was not demonstrated in that
approach [3]. 

The impact of bcl-2, a key antiapoptotic protein, on malig-
nant gliomas by suppressing its expression was also investigat-
ed: antisense human bcl-2 cDNA was transfected into human
malignant glioma cells. Transplantation of antisense bcl-2 cells
resulted in no tumor formation [38]. Antisense bcl-2 expression
could effectively reduce glioma survival, including retarding in
vitro growth, complete loss of tumorigenicity, and significantly
enhanced cisplatin cytotoxicity.

Human Nr-CAM (Neuroglia related Cell Adhesion
Molecule) is over expressed in glioblastoma. Subcutaneous
injection of antisense hNr-CAM overexpressing glioblastoma
cells into nude mice caused complete inhibition of tumor forma-
tion [39]. Intra-tumoral inoculation of antisense hNr-CAM
expressing plasmid also caused slow tumor growth in nude mice
in vivo. The authors concluded that hNr-CAM is a valid target
for potential gene therapy of glioblastoma tumors.

Some experimental models of glioma treatment were recent-
ly developed targeting different factors as telomerase, urokinase-
type plasminogen activator receptor or matrix metalloproteinas-
es. Telomerase is a ribonucleoprotein enzyme that is detected in
the vast majority of malignant gliomas but not in normal brain
tissues. Thus, antisense against human telomerase RNA compo-
nent (2-5A-anti-hTER) was investigated for its antitumor effect
on an intracranial malignant glioma model in nude mice [40].
The authors demonstrated that 2-5A-anti-hTER reduced the via-
bility of malignant glioma cell lines to 20-43%. The treatment of
intracranial malignant gliomas in nude mice with 2-5A-anti-
hTER was therapeutically effective.

The urokinase-type plasminogen activator receptor (uPAR)
and the p16 tumor suppressor gene play a significant role in
glioma invasion. It was demonstrated that downregulation of
uPAR and overexpression of p16 using a bicistronic caused an
additive and cooperative effect in the suppression of the tumor
growth of glioblastoma cell lines in an ex vivo intracerebral
tumor model [41].

Increased expression of matrix metalloproteinases (MMPs)
has been associated with human glioblastoma tumor progression.
For this reason down-regulate MMP-9 expression was done by
stably transfecting a high-grade glioblastoma cell line with a
plasmid vector capable of expressing an antisense transcript
complementary to a 528-bp segment at the 5' end of human
MMP-9 cDNA [42]. Intracerebral injection of antisense stable
transfectants in nude mice produced no tumors. These results
suggest that MMP-9 expression is essential for the invasiveness
of glioblastoma cells. 

Conclusions 

Human gene therapy is defined as a medical intervention
based on the administration of genetic material in order to mo-
dify or manipulate the expression of a gene product or to alter the
biological properties of living cells. Cells may be modified ex
vivo for subsequent administration or altered in vivo by gene
therapy products given directly to the subject. Example that falls
under this definition include use of antisense oligonucleotides to
block gene transcription or use of sequence-specific oligonu-
cleotides to correct a genetic mutation [43]. 

The gene therapies in comparison to surgery or chemothera-
py are new, sophisticated and still experimental. A number of
strategies for inhibiting gene expression have been developed:
the triple helix approach, decoy transcription factor binding and
oligodeoxynucleotides seek to disrupt gene expression at the
level of transcription. The antisense oligonucleotides and short
interfering RNA molecules attempt to disrupt expression at the
level of mRNA translation [44, 45]. Antisense therapy has been
widely used to specifically and selectively inhibit the expression
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of selected genes at the messenger RNA level. Combinations of
antisense oligonucleotides with chemotherapeutic agents may
offer important advantages in cancer treatment [46]. Anti - gene
therapies are the subject of many clinical trials. It is necessary to
underline their high specifity, relative security and very promis-
ing results. For that reason we hope, that this modern type of
treatment [47, 48, 49] will soon become alternative for more tra-
ditional methods used in cancer therapy including therapeutic
strategies for brain tumors [50].
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