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Abstract

Purpose: Analysis of the uterine contractility in the 
nonpregnant states has provided information about physio-
logical changes during menstrual cycle. There is need 
to develop methods of recording uterine activity as well 
as mathematical interpretation of recorded time series. 
Wavelets are a new powerful tool for signal and image 
processing. The aim of this study is an introductory view of 
Fourier (one of the fundamental methods of investigating 
of biomedical signals) and wavelet transforms applications 
in the analysis of uterine contractions.

Material and methods: Spontaneous uterine activity 
of healthy patient and patient with dysmenorrhea was 
recorded by micro-tip two sensors catheter (Millar Instru-
ments, Inc. USA). After amplification analogue signals 
were converted to digital. Signals were analysed using Fou-
rier and wavelet transforms.

Results: Contrary to the Fourier decomposition, which 
is global and provides the information integrated over the 
whole signal, the continuous and discrete wavelet trans-
forms allow to extract local and global variations of the 
recorded contractions. From the analysis of the coefficients 
of the wavelet transform we can assess various pattern of 
propagation: normal propagation, simultaneous propaga-
tion and inverted propagation.

Conclusions: This study is the introduction to the 
wavelet analysis of the uterine contraction signals. Wavelet 
transform provides insight into the structure of the time 
series at various scales. It allows to localise changes of the 

signal in time, providing additional information in com-
parison with the Fourier transform.

Key words: uterine contractions, Fourier transform, 
wavelet transform.

Introduction

Analysis of the uterine contractility in the nonpregnant 
states has provided information about physiological changes 
during the menstrual cycle [1]. There is need to develop meth-
ods of recording uterine activity as well as mathematical inter-
pretation of recorded time series [2]. One of the fundamental 
methods of investigating various kinds of biomedical signals 
is the Fourier transform [3], which analyses signal in terms of 
periodic basis function (sine and cosine). Wavelets are a new 
powerful tool for signal and image processing. In the wavelet 
transform signal is decomposed into elementary components 
well localised in the time domain and in the frequency domain. 
This method has been successfully used in a number of fields. 
The wavelet transform have been used to analyse heart rate 
variability [4], EEG signals [5], electromyographic signals [6] 
and other kinds of biomedical signals [7].

The aim of this study is an introductory view of Fourier 
and wavelet transforms applications in the analysis of uterine 
contractions.

Data acquisition
Spontaneous uterine activity was recorded by a micro-

tip catheter (Millar Instruments, Inc, USA). The study was 
approved by the regional ethics committee. The device 
consisted of two miniature pressure sensors (the distal sensor 
and the proximal sensor). The distance between sensors was 
30 mm. The sensors produced electrical signals which varied in 
direct proportion to the magnitude of sensed pressures. After 
amplification, analogue signals were passed to IBM computer 
for conversion to digital form by means of an analogue-digital 
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(A/D) converter. Converted signals were recorded with a fre-
quency 2 Hz on a computer hard disk. The sampling frequency 
may be changed in acquisition procedures. For analysis of the 
recorded signals programs written in MATLAB (MathWorks, 
Inc, USA), a high-performance language for technical comput-
ing, were used. Signal Processing Toolbox and Wavelet Toolbox 
appeared very helpful.

Fourier analysis
Intrauterine pressure signals may be analysed in the time 

domain or in the frequency domain. Parameters in the time 
domain such as area under curve recording (AUC), maximal 
amplitude of contractions and various statistical quantities 
(mean, standard deviation, median, skewness and so on) are 
easily computed even for short time window [7]. In frequency 
domain signal is decomposed by means of spectral analysis 
into its sinusoidal components. The Fourier transform (FT) of 
a  signal x(t) is defined as [2]

     (1)

where f is the frequency in cycles per unit time, usually in cycles 
per second (Hz). 

The power spectrum or power spectral density function is 
given by

     (2)

We can plot the power as a function of frequency. This 
information (frequency-based distribution of power) is very 
important from the medical diagnostics point of view. Fou-
rier transform has some drawback. Frequencies that occur in
one part of signal may be quite different from frequencies
in the other part of it. There is no information about the 
localisation of the individual frequency components. Power 
spectrum gives only the frequency composition integrated
over the whole signal or the whole analysing segment of the 
signal.

Basis function

     (3)

are perfectly localised in frequency domain, but they are not 
localised in time domain, they are infinite in time. Fig. 1 shows 
an example of Fourier spectral analysis of uterine activity 
signals of normal patient performed by means of fast Fourier 
transform (FFT). For convenience, there are also the power 
versus period plot. Power spectra for distal and proximal sig-
nals are very similar. In Fig. 2 there are the results of Fourier 
decompositions of the distal and the proximal signals of patient 
with dysmenorrhea. The power spectra for distal and proximal 
uterine activities are quite different (Fig. 1).

The Fourier transform is a global one. We have no informa-
tion about localisation of the frequencies in time. Such infor-
mation gives us the windowed Fourier transform (WFT), also 
known as short time Fourier transform (STFT) [9].

     (4)

X(f,τ) is a two dimensional function of time and frequency, is 
the window outside of which the signal is suppressed (Fig. 2).

The spectrogram SPEC is defined as the square modulus 
of STFT

     (5)

SPEC(f,τ) is the energetic version of short time Fourier trans-
form, it provides the energy distribution on a time-frequency 
plane. Often spectrogram is defined as the magnitude of STFT. 
Time-frequency localisation obtained by means of STFT is not 
precise. The product of the frequency and the time resolutions 
is constant

     (6)

so the increase of resolution in one domain causes the decrease 
of resolution in the other one. In uterine contraction activity 
signals low frequencies play the dominant role, thus the resolu-
tion in time domain is poor. Biomedical signals are in general 
very complicated. Sharp spikes, noise, non-stationarity result in 
Fourier decomposition of such time series into harmonic func-
tion being not satisfactory. Fig. 3 shows that it is very difficult 
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Figure 1. Fourier analysis of normal uterine contractions.
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Figure 2. Fourier analysis of the contractions of the patient with 
dysmenorrhea.
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to extract diagnostic information from spectrogram of uterine 
contraction activity signal (Fig. 3).

Wavelet transform
The wavelet transform is a new mathematical tool for the 

analysis of signals and images. The definition of the wavelet 
transform is similar to that of the Fourier transform. Instead of 
the periodic functions (sine and cosine) we use wavelets. The 
continuous wavelet transform (CWT) of a signal x(t) is given 
as [10]

     (7)

where:    is the analysing wavelet (mother 
wavelet), 

a – determines dilation, b – specifies translation and 
(– ∞ < a, b < ∞ , a ≠ 0). 

In other words ‘a’ means scale and ‘b’ means position. Thus 
the equation (1) may be rewritten in a simpler form

     (8)

The term scale, used in wavelet analysis, is similar to the 
scale used in geographical maps. We can obtain small scales 
(high frequencies) or large scales (low frequencies) compo-
nents of the analysed time series. In the wavelet transform we 
have an infinitive set of possible basis functions. Among them 
are Daubechies wavelets, Mexican hat wavelet, Meyer wavelet, 
Haar wavelet, Morlet wavelet, Coiflet wavelet, Spline wavelet 
and others. All of these functions are well localised in time and 
well localised in frequency. Fig. 4 shows the Morlet wavelet and 
the magnitude of the Fourier transform of that wavelet Ψ(ω). 
We can see a good localisation of these functions in the time 
domain and in the frequency domain (Fig. 4).

For admissible mother wavelet (the Fourier transform 
of this function has neither a zero frequency component nor 
infinite frequency components) the equation (1) there is 
a  convolution integral. Thus, wavelet analysis can be viewed as 
a filtering process. Coefficients W(a, b) are obtained by band-
-pass filtering signal x(t) by wavelet . If wavelet coefficients 
are large the resemblance between the signal and the wavelet is 
strong, otherwise it is slight.

It is possible to analyse a signal in time-scale plane with 
relative accuracy. Time-frequency plane is equivalent to time-
-scale plane. The wavelet spectrogram which is also named 
wavelet scalogram or shorter scalogram is defined as [10,11].

     (9)

Scalogram shows the distribution of energy in the time-scale 
plane. Scalogram can also be defined as a the magnitude of wave-
let coefficients. Large scale corresponds to a stretched wavelet, 
small scale corresponds to a compressed wavelet (Fig.  5).

Fig. 5 shows us four scalograms of uterine contractions 
time series. We can see that for the normal contractions pat-
terns the distal and the proximal signals are very similar. In the 
case of dysmenorrhea contractions, patterns are quite different. 
The local maxima of the absolute values of the wavelet coef-
ficients reveal the occurrence of sharp time series variations. 
Local minima are connected with the occurrence of slow signal 
changes. The sharp temporal variations are zooming in over all 
scales. 

Discrete wavelet transform
The disadvantages of the continuous wavelet transform 

are computational complexity and redundancy. They can be 
reduced by discretising scale ‘a’ and position ‘b’. In dyadic 
representation, scale and position are based on power of two, 
so the wavelet decomposition works like a cascaded octave 
band-pass filter. Octave is the interval where the frequency at 
the end is twice the frequency at the beginning. For a forward 
discrete wavelet transform

     (10)

the scale and position are based on power of two (a=2j, b=k2j 

– dyadic representation), j, k are the level and position param-
eters and .

Wavelet coefficients W (j,k) = W (level, position) at the 
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Figure 3. The uterine contraction signal and its spectrogram. Figure 4. The Morlet wavelet ψ(t) and the magnitude of the 
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lower parameter j represent the characteristic of the signal at 
higher frequency and vice versa. In discrete wavelet decomposi-
tion, wavelet coefficients are computed for j = 1, 2, 3, … . At each 
level j the number of W(j,k) is reduced by . In practise, the 
maximum of 11 steps of wavelet decomposition is sufficient.

An efficient way to compute the discrete wavelet trans-
form is the multiresolution signal decomposition algorithm 
(MRSDA), known also as the Mallat algorithm [12]. In the 

multiresolution algorithm time series is decomposed into 
a  collection of orthonormal function, which are obtained by 
transactions and dilations of a scaling function (t) and the 
wavelet ψ(t). In practise, here the signal is convolved with 
a pair of quadrature mirror decomposition filters (QMF’s) 
– lowpass filter L and highpass filter H and afterwards results 
are downsampled by a factor of two. This operation splits the 
signal bandwidth in half. As the results approximation coef-

Figure 5. A) the scalograms of normal uterine contractions, B) the scalograms of contractions of patient with dysmenorrhea.
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ficients cA1 and detailed coefficients cD1 are obtained. The 
process is iterated but only the approximation coefficients are 
further processed. From wavelet coefficient obtained by means 
of Mallat algorithm we can reconstruct approximations Aj and 
details Dj, so for a given reference level J, signal x(t) may be 
expressed as:

     (11)

Approximations are the high scale low frequency com-
ponents of the signal. Details are low scale high frequency 
component of the signal. 

Fig. 6 shows how the time series is built from its approxi-
mation and details components. The level of performed 
discrete wavelet transform was 7. We reconstructed approxima-
tion A7 and details . This seven wavelet decomposi-

tion represents the following frequency bands (from D1 to D7): 
0.25 - 0.5 Hz; 0.125 - 0.25 Hz; 0.0625 - 0.125 Hz; 0.03125 - 0.0625 Hz; 
0.015625 - 0.031125 Hz; 0.0078125 - 0.015625 Hz; 0.00390625 - 
-0.0078125 Hz. These are equivalent to the following period 
bands: 2 - 4 s; 4 - 8 s; 8 - 16 s; 16 - 32 s; 32 - 64 s; 64 - 128 s; 128 - 256 s. 
Approximation  is the component between 0Hz and the lowest 
frequency at the frequency band at level 7 (Fig. 6). 

Propagation of uterine contractions signals
By means of the wavelet transform we can determine the 

propagation of the uterine contraction signals [13]. From the 
details  we can assess the time lag between the distal and 
proximal signals. There are various patterns of propagation of 
contractions:

– normal propagation – the uterine fundus contracts 
before the uterine os, positive lag,

Figure 6. The discrete wavelet decomposition of a signal.
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– inverted propagation – the uterine fundus contracts after 
the uterine os, negative lag,

– simultaneous propagation – the uterine fundus and the 
uterine os contract simultaneously, lag equals 0. 

Fig. 7 shows that from the details D6 and D7 we can assess 
the direction of propagation of the signal. It can be seen that 
in both cases the uterine fundus contracts before the uterine 
os. The proximal signals are delayed in relation to distal signals 
(Fig. 7).

Concluding remarks

This study is the introduction to the wavelet analysis of the 
uterine contraction signals. We discuss both the Fourier trans-
form and the wavelet transform. Wavelet transform provides 
insight into the structure of the time series at various scales. It 
allows to localise changes of the signal in time, providing addi-
tional information in comparison with the Fourier transform. 
Wavelet analysis may be used in the research on dysmenorrhea 
and endometriosis as an additional tool.
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