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Abstract

This review paper describes methods of protecting the 
peritoneal membrane in uremic patients chronically treated 
with peritoneal dialysis. Possible interventions involved in pro-
tection of the peritoneum aim at reducing peritoneal exposure 
to glucose, glucose degradation products and lactate; preventing 
or diminishing harmful effects of dialysis solutions; decreasing 
infection rate, especially peritonitis, and its consequences. 
Techniques reducing peritoneal exposure to bioincompatible 
solutions include peritoneal resting, replacing some glucose 
exchanges with amino acid-based, icodextrin-based or glyce-
rol-based dialysis solution, using bicarbonate or pyruvate as 
a buffer, and administering solutions with low content of glu-
cose degradation products. Preventing or diminishing harmful 
effects of dialysis solutions includes interventions with drugs, 
especially those given intraperitoneally. Decreasing local and 
systemic infection rate is also very or even the most important 
in maintaining relatively unchanged peritoneal membrane histo-
logy and function.

Key words: peritoneal membrane, dialysis solutions, peritoneal 
resting, drugs, infections.

Long-term peritoneal dialysis (PD) usually leads to perito-
neal membrane failure. Main factors, important in pathogenesis 
of deterioration of the peritoneum, include continuous exposure 
to bioincompatible dialysis solutions and high peritonitis rate. 
Having in mind factors responsible for the peritoneal mem-

brane failure, possible interventions in its protection aim in PD 
patients at: 1) reducing peritoneal exposure to glucose, glucose 
degradation products (GDPs), and lactate; 2) preventing or 
diminishing harmful effects of dialysis solutions; 3) decreasing 
infection rate, especially peritonitis occurrence and its harmful 
consequences.

Reducing peritoneal exposure 
to bioincompatible solutions

Techniques include peritoneal resting, replacing some 
glucose exchanges with amino acid-based (AA-DS), icodex-
trin-based (PG-DS) or glycerol-based dialysis solution, using 
bicarbonate or pyruvate as a buffer, and administering solutions 
that have low content of GDPs [1].

Temporary discontinuation of continuous ambulatory peri-
toneal dialysis (CAPD) for 4 weeks in patients who developed 
a reduction in ultrafiltration capacity has been reported to lower 
mass transfer area coefficients (MTACs) of urea and creatinine 
and to increase ultrafiltration [2,3]. The effect lasted for up 12 
months. More recent studies showed that peritoneal resting was 
especially effective when applied early after the detection of 
ultrafiltration failure [4] and with heparinized lavage [5]. Peri-
toneal resting has been associated with both an increase [6] and 
a decrease of dialysate glycoprotein cancer antigen 125 (CA125) 
concentrations [7]. In the other study [8], rats exposed to dialysis 
fluid for 5 weeks showed a severe angiogenesis in various peri-
toneal tissues, a profound fibrosis in the parietal peritoneum, 
a higher number of mast cells and milky spots in the omentum 
and severe damage to the mesothelial cell layer covering the 
peritoneum. The 12 weeks peritoneal rest resulted in a signifi-
cant reduction in blood flow in visceral but not in parietal perito-
neum, a reduced degree of fibrosis, normalization of increased 
mast cell density and recovered mesothelial cell layer.

AA-DS is more biocompatible than glucose-based solutions. 
Recently it was proven in the rat model of peritoneal dialysis [9]. 
Daily exposure to glucose-based solution for 5 weeks resulted 
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in a significant increase in the number of rolling leukocytes 
in mesenteric venules, whereas instillation of AA-DS did not 
change the level of leukocyte rolling. Glucose-based solution 
evoked a significantly higher number of milky spots in the omen-
tum, whereas this response was significantly reduced in animals 
exposed to AA-DS. These data indicate reduced immune activa-
tion with the use of AA-DS. Quantitative morphometric evalu-
ation showed less angiogenesis in the parietal peritoneum after 
treatment with AA-DS compared to glucose-based solution. 
Instillation of AA-DS resulted in approximately 50% reduction 
of fibrosis in the mesentery and approximately 25% reduction in 
the parietal peritoneum compared to glucose-based solution. As 
evidenced by electron microscopy, glucose-based solution dam-
aged the mesothelial cell layer, whereas mesothelium was intact 
after AA-DS treatment.

PG-DS is mentioned as more biocompatible than glucose-
based solutions. However, the recent study by Gotloib et al. 
[10] showed that both osmotic agents, 4.25% glucose and 7.5% 
icodextrin, substantially restrain the normal process of mesothe-
lial cell repopulation and induce repair by means of connective 
tissue. The underlying mechanism is most likely sustained oxida-
tive stress.

The 15 new peritoneal dialysis patients were randomized to 
treatment with either glucose-based or glycerol-based dialysis 
solutions [11]. No difference between the two groups was found 
after 1 and 3 months with regard to peritoneal transport kinetics, 
but dialysate CA-125 concentration was significantly higher
in the glycerol-treated patients than in the glucose-treated 
ones.

Lactate itself exerts harmful effect on human perito-
neal mesothelial cells (HPMC) viability. It was shown that
3,4-dideoxyglucosone-3-ene (3,4-DGE) or acidity alone inder 
the absence of lactate do not decrease HPMC viability. How-
ever, combination of acidity and 3,4-DGE markedly decreases 
viability of HPMC under the existence of lactate [12]. Lactate 
concentration is the major determinant of polyol pathway 
activation and sorbitol accumulation in HPMC. Reduction of 
lactate concentrations might help to limit the negative impact 
of dialysis solutions on peritoneal membrane and promote its 
long-term survival [13].

Pyruvate has induced less cytotoxicity to peritoneal macro-
phages and mesothelial cells than did lactate [14]. That finding 
can be attributed partly to the lower pH of pyruvate (which 
makes it a weaker buffer), but also to the ability of pyruvate to 
scavenge oxygen radicals [15]. Pyruvate also causes less stimula-
tion of intracellular degradation of glucose in the sorbitol path-
way [16]. Lactate increases the intracellular NADH/NAD+ ratio 
due to inhibition of NAD+ regeneration. A high NADH/NAD+ 
ratio is also called pseudohypoxia [17] and is likely to stimulate 
the formation of vascular endothelial growth factor (VEGF) 
[18]. Of many potential mediators produced by mesothelial 
cells, VEGF was more important than IL-6 in determination 
of peritoneal solute transport rates in newly started nondiabetic 
peritoneal dialysis patients [19].

All dialysis solutions not containing glucose have advantage 
as not stimulating formation of advanced glycation end products 
(AGEs), which are well known contributors to the peritoneal 
membrane failure.

Heat sterilization of glucose-based peritoneal solutions 
increases a variety of GDPs, which directly cause cellular 
injury in fibroblasts, mesothelial cells and mononuclear cells. 
Some GDPs, like methylglyoxal, may additionally facilitate the 
generation of AGEs, causing ultrafiltration failure. Increase in 
temperature to 37°C during storage for one day (applicable in 
tropical countries) has minor effect on 3,4-DGE formation. 
Storage in temperature of 60°C even for one day significantly 
enhances 3,4-DGE content in dialysis fluid [20].

Exposure to dialysis solutions with neutral pH and reduced 
GDPs content has resulted in an increase in the effluent concen-
tration of CA-125 [21-27], in a decrease in dialysate concentra-
tion of hyaluronan, irrespective of the buffer used [21,22,27,28], 
in better preservation of cobblestone-shaped mesothelial cells 
due to protective effect on their fibroblastoid transition [23], 
and less formation of AGEs [29,30].

It is commonly accepted that CA-125 levels in dialysate 
reflect mesothelial cell mass. Therefore, higher CA-125 con-
centrations indicate better preservation of the peritoneal meso-
thelium. When two groups of new CAPD patients (one treated 
with low GDP solution, second treated with high GDP solution) 
were compared, the low GDP group, using Balance Fresenius 
Medical Care (Germany), showed higher dialysate CA-125 levels 
during one year CAPD follow-up (55.4±24.8 vs 8.8±1.7 U/ml 
at the 1st month – p=0.000, 56.7 ± 28.1 vs 22.1±11.5 U/ml at 
the 6th month – p=0.000, 54.2 ± 28.2 vs 24.6±16.5 U/ml at the 
12th month – p=0.000) [23]. In ex vivo studies, dialysate from 
patients treated with low GDP solution supported growth of 
mesothelial cells better than that obtained from the same 
patients on standard dialysis fluid [31]. Additionally, in vitro 
remesothelialization occurred without delay in the presence 
of low GDP solution but was markedly retarded by standard 
solution [32]. These facts, taken together, indicate that higher 
concentration of CA-125 observed with low-GDP solution, may 
reflect less harmful effects of this solution on mesothelium as 
compared to conventional fluid.

Glycosaminoglycan (hyaluronan) is a high molecular 
weight mucopolysaccharide composed of repeating dimmers of
N-acetylglucosamine and glucuronic acid. Mesothelial wound 
healing is associated with local synthesis of hyaluronic acid, 
therefore lower concentration of hyaluronan in dialysate may 
indicate less need for remesothelialisation occurring when low-
GDP solutions are used instead of standard fluid [21,22,26,28]. 
The rat studies seem to confirm this hypothesis [33].

The influence of low-GDP solution on chronic peritoneal 
inflammatory state is not clear. A decrease in dialysate concen-
tration of IL-6 was shown, but simultaneously no influence on 
dialysate CRP level was observed [24].

Formation of AGEs in vitro [29] and in the rat model of 
peritoneal dialysis [30] occurs faster in the presence of standard 
dialysis fluid compared to low-GDP solution. The influence 
of low-GDP fluid on expression of VEGF and microvascular 
proliferation in the rat is controversial [30,34]. No significant 
changes in dialysate VEGF in CAPD patients were observed 
with the use of low-GDP solution [26,27].

Do et al. [23] have introduced scoring system for description 
of morphology of human peritoneal mesothelial cells: score 
1=cobblestone-shaped cells, score 2=mixed, score 3=fibroblas-
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toid cell dominant. New CAPD patients treated with low-GDP 
solution as compared to those using high-GDP solution revealed 
lower cell scores at the 1st, 6th and 12th months (1.22, 1.22 and 
1.56 vs 1.61, 1.75 and 2.14; p < 0.05, p < 0.01 and p < 0.01, 
respectively), and the significantly lower number of fibroblast 
dominant cultures at the 12th month (12.5% vs 50% patients, 
p<0.05) [23]. Human peritoneal mesothelial cells can be stained 
with both cytokeratin and vimentin, whereas typical fibroblasts 
can be stained with vimentin but not cytokeratin. Do et al. [23] 
demonstrated that both cobblestone-shaped mesothelial cells 
and fibroblastoid cells were positively stained with cytokeratin 
and vimentin. This indicates that fibroblastoid cells originated 
from epithelium, most likely in a transition from peritoneal 
mesothelial cells under GDP stress, although they looked like 
typical fibroblasts in morphology [23]. Selgas et al. [35] suggest 
that transdifferentiated mesothelial cells are main source of 
VEGF in PD patients and that an epithelial-to-mesenchymal 
transition of mesothelial cells is a mechanism responsible for 
high peritoneal solute transport rate. This transition might be 
the initiating lesion associated with high transport rate, inde-
pendent on time on PD [36].

A superior survival was found in patients treated with 
a neutral pH, low-GDPs solution (Balance, Fresenius Medical 
Care, Germany) compared to those treated with the conven-
tional fluid. Balance gave mortality rates of 12.2 deaths per 100 
patient-years compared with 18.3 deaths per 100 patients-years 
for the conventional solution. On the other hand, there were 
no differences between the two groups for technique survival, 
peritonitis-free survival, or peritonitis rates [37].

Treatment of CAPD patients with combination of AA-DS, 
PG-DS and bicarbonate/lactate-buffered glucose-based solution 
for 30 weeks resulted in higher CA-125 dialysate concentration 
compared to standard fluid [38]. However, this low-glucose and 
low-GDPs regimen was not able to prevent the decrease of 
dialysate CA-125 level, observed after 6 weeks of dialysis follow-
up. It indicates that advanced studies should be continued to 
improve biocompatibility of peritoneal solutions.

Preventing or diminishing harmful effects 
of dialysis solutions

Interventions with drugs for the preservation of the perito-
neum have been studied, but such interventions have never been 
applied for a large scale. Drug therapy is still experimental – and 
to some extent disappointing [1].

Phosphatidylcholine, given intraperitoneally during CAPD, 
increased ultrafiltration in patients with ultrafiltration failure 
and with normal ultrafiltration [39,40-42]. The most likely 
mechanism is an effect on lymphatic absorption of fluids [43], 
either by direct uptake in the subdiaphragmatic lymphatics [44] 
or by an effect on the glycocalyx that inhibits transmesothelial 
transport. Phosphatidylcholine has never been employed in 
day-to-day clinical practice because it is extremely difficult to 
dissolve in dialysis solution and oral administration is not effec-
tive [45].

Intraperitoneal hyaluronan effects were examined in peri-
toneal dialysis patients [45,47] and in rats [48,49]. In peritoneal 

dialysis patients, solute (sodium, urea, creatinine, albumin, 
glucose) clearances, dialysate to plasma ratios and MTACs 
were similar with or without hyaluronan [47]. In rats, clear-
ance of urea was higher with hyaluronan [49]. In other studies, 
intraperitoneal administration of glycosaminoglycan in CAPD 
patients was associated with reduced peritoneal protein loss [46]. 
In some studies hyaluronan decreased peritoneal fluid absorp-
tion [49,50] or at least net ultrafiltration tended to be slightly 
higher during treatment with solution containing hyaluronan 
compared to control treatment [47]. Recently, Flessner et al. 
[51] concluded that the hyaluronan concentration in the visceral 
peritoneal interstitium does not significantly contribute to the 
barrier for water flow to or from the visceral space surround-
ing the peritoneal cavity. Hyaluronan also revealed protective 
effect against peritoneal injury during repeated exposure to 
hypertonic dialysis solutions or 0.9% saline in rats [48,52,53]. 
Explanation of this finding includes suppression of the release 
of active oxygen from peritoneal macrophages by hyaluronan 
[54], which also acts as a free-radical scavenger [55]. 

In rats exposed to dialysis fluid supplemented with
N-acetylglucosamine, peritoneal permeability to creatinine and 
proteins was reduced when compared to animals dialyzed with 
glucose solution. This effect was related to accumulation of gly-
cosaminoglycans in the peritoneal interstitium [56,57]. Synthesis 
of hyaluronan by mesothelial cells was significantly increased in 
the presence of N-acetylglucosamine [58]. Tissue content of 
hyaluronic acid was increased in rats receiving N-acetylglu-
cosamine intraperitoneally as compared to animals treated with 
glucose or mannitol based dialysis solutions. However, submes-
othelial thickness showed an increase in all rat groups [59]. 

In rats low molecular weight heparin – dalteparin – improved 
peritoneal ultrafiltration acutely due to reductions in peritoneal 
transport of small solutes. It is speculated that this effect may 
be related to the anti-inflammatory effects of dalteparin, reduc-
ing the vasodilatation normally occurring at the beginning of 
peritoneal dialysis dwells [60]. Using intraperitoneal dalteparin 
in long-term peritoneal dialysis patients, an increase in the 
peritoneal restriction coefficient to macromolecules was found 
[61]. Recent studies [62] showed that an increase in ultrafiltra-
tion caused by low molecular weight heparin was associated 
with inhibition of formation of thrombin and blockade of C5a 
activity.

Peritoneal fibrosis, and particularly peritoneal sclerosis, 
constitutes some of the most disastrous complications of peri-
toneal dialysis [63]. In the view of the good results obtained 
with tamoxifen for the treatment of retroperitoneal fibrosis, in 
1992 Diaz-Buxo et al. [64] suggested for the first time its use in 
peritoneal dialysis patients. Tamoxifen inhibits protein kinase C, 
a mediator of cellular proliferation, and possibly inhibits other 
growth factors (epidermal growth factor and calmodulin). Nine 
of 23 patients, diagnosed with peritoneal sclerosis, were treated 
with tamoxifen (20 mg BID for a period of 14.5±7 months) 
and 14 patients served as controls [65]. None treated patient 
did not develop encapsulating peritoneal sclerosis (EPS) and 
overall mortality rate was 22%, whereas in non-treated group 
4 patients developed EPS and 71% died (p=0.03).

The rat studies indicate that angiotensin II blockade may be 
a potential means of preventing fibrosis of the peritoneal mem-
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brane [66,67]. Duman et al. [66,67] found that, in rats receiv-
ing high glucose dialysis solutions for 4 weeks, simultaneous 
administration of enalapril significantly reduced the thickness 
of submesothelial connective tissue, produced fewer adhesions, 
and was associated with lower concentration of tumor growth 
factor-  (TGF- ). Studies on cultured HPMC additionally 
showed that TGF- 1 induced by high glucose is controlled by 
angiotensin-converting enzyme inhibition and angiotensin II 
receptor blocker [68].

In rats dexamethasone has a diminishing effect on the 
fibroproliferative phase of non-inflammatory TGF- -induced 
peritoneal fibrosis [69]. Rapamycin, an antirejection agent 
that has potential antifibrotic and anti-angiogenic activity, used 
intraperitoneally in a rodent model of TGF- 1-induced perito-
neal fibrosis and angiogenesis, did not have significant benefit 
on the morphological changes in the peritoneum [70].

The high glucose concentrations of the dialysis solutions 
may saturate physiological glucose metabolism pathways and 
stimulate the polyol pathway, which probably contributes in 
the development of fibrosis and angiogenesis during peritoneal 
dialysis. In this pathway of intracellular glucose metabolism, 
glucose is reduced to sorbitol by aldose reductase, coupled with 
oxidation of NADPH to NADP+. Sorbitol is then oxidized to 
fructose by sorbitol dehydrogenase, coupled with reduction 
of NAD+  to NADH. Possible mechanisms of polyol pathway-
linked functional abnormalities include osmotic stress due to 
intracellular accumulation of sorbitol, an increased NADH/
NAD+ ratio leading to pseudohypoxia, and enhancement of the 
formation of AGEs by fructose. Inhibition of the polyol pathway 
in rats by administration of zopolrestat, a newly developed 
inhibitor of aldose reductase activity, resulted in less fibrosis 
and fewer peritoneal vessels than in rats dialyzed with 3.86% 
glucose-containing fluid without zopolrestat [71].

An antioxidant, sodium sulfite, is an additive commonly 
used for food preservation. It was able to suppress AGEs forma-
tion in rats with normal renal function, eliminating oxidative 
stress caused by methylglyoxal. It is presumed that sodium 
sulfite reacts with methylglyoxal to form chemically inactive 
substances. Sodium sulfite was administered intraperitoneally 
to rats once a day for 5 consecutive days together with methyl-
glyoxal. Other group of rats was given methylglyoxal alone. 
Prominent hypervascularity and intense immunostaining of 
anti-AGE antibodies were noted in methylglyoxal-treated rats, 
whereas the macroscopic alterations were suppressed in the rats 
that had been treated with sodium sulfite [72].

The potential use of AGEs inhibitors and breakers as 
salvage therapy for peritoneal membrane failure was also 
considered in studies with pimagedine, which has been shown 
to inhibit the formation of AGEs and to slow the progression of 
nephropathy in animal models [73].

Decreasing infection rate 
and its harmful consequences

Severe or repeated episodes of peritonitis are particularly 
damaging to the peritoneal membrane. The short-term, single 
episodes had no significant effect on membrane permeability 

or ultrafiltration, while recurrences or clusters of infection 
caused an increase in membrane permeability and reductions in 
ultrafiltration. Thus, prevention of infectious complications of 
peritoneal dialysis, especially peritonitis, is a great challenge for 
every dialysis unit. Proper patient’ education and regular use of 
mupirocin at the exit site exert an important role in diminishing 
peritonitis rate. Use of prophylactic antibiotics at the time of 
catheter insertion has also been shown to reduce the incidence 
of early peritonitis [74]. Accepted rate of peritonitis is 1 episode 
per 18 patient-months [75].

In the rat model of peritoneal dialysis it was shown that 
hyaluronan modifies inflammatory response and peritoneal 
permeability during peritonitis [48,53,76]. There are no studies 
confirming this beneficial effect in humans.

It was shown that also acute systemic inflammation influ-
ences the peritoneal membrane function, increasing small solute 
transport rate. Possible mechanisms linking inflammation and 
peritoneal transport include enhancement of vascular superoxide 
formation leading to modification of endothelial junctional ele-
ments (advanced oxidation protein products formation), IL-6 
increased generation influencing D/P of creatinine and a direct 
effect of C-reative protein on vascular permeability [77]. This 
finding may contribute to explanation of reasons of damage of 
the peritoneal membrane over dialysis duration in patients with-
out peritonitis, but showing episodes of systemic inflammation. 
Thus, to protect the peritoneal membrane one also has to pay 
attention for avoiding systemic inflammation.
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