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Fetal membranes as a source of stem cells
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ABSTRACT

In recent years, a constant growth of knowledge and clinical applications of stem cells have been observed. Mesenchymal 
stromal cells, also described as mesenchymal stem cells (MSCs) represent a particular cell type for research and therapy 
because of their ability to differentiate into mesodermal lineage cells. The most investigated source of MSCs is bone marrow 
(BM). Yet, collection of BM is an invasive procedure associated with significant discomfort to the patient. The procedure 
results in a relatively low number of these cells, which can decrease with donor ś age. Therefore, it seems to be very important 
to find other sources of mesenchymal stem cells nowadays. A human placenta, which is routinely discarded postpartum, in 
spite of its natural aging process, is still a rich source of stem cells capable to proliferate and in vitro differentiate in many 
directions. Besides homing and differentiation in the area of injury, MSCs there elicit strong paracrine effects stimulating the 
processes of repair. In this review, we focus on the biology, characteristics and potential clinical applications of cells derived 
from human fetal membranes: amnion and chorion.
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INTRODUCTION
Stem cells biology has become one of the most interesting 
and most often studied subject, especially in the context 
of regenerative medicine. The use of stem cells in the 
regeneration, repair or replacement of damaged tissues 
and organs is currently the subject of many studies [1-
3]. In particular, in the context of tissue engineering and 
regenerative medicine, BM-isolated mesenchymal stromal 
cells/mesenchymal stem cells (MSCs) are of great interest. 
The first report on the presence of nonhematopoietic stem 
cells in BM was proposed by German pathologist Cohnheim 
about 130 years ago. Further research conducted by 
Friedenstein et al. [4,5] have proved that the BM is the source 
of subpopulation of fibroblast-like cells capable of adherence 

to tissue culture plastic, colony forming unit (CFU) capacity, 
differentiation into fibroblasts and other cells of mesodermal 
origin. MSCs can give rise to progenitor cells of osteoblasts, 
chondroblasts, adipocytes, cardiomyocytes and skeletal 
muscles. Multipotent plastic-adherent cells isolated from BM 
and other tissues should be currently termed mesenchymal 
stromal cells, often referred as mesenchymal stem cells [6]. 
Multipotential character of MSCs enables their use in many 
areas of regenerative medicine. Due to the BM harvesting 
limitations, alternative sources of MSCs have been sought. 
The presence of MSCs has been demonstrated in many 
tissues, also in fetal membranes.

185



Fetal membrane stem cells

Mesenchymal stem cells/mesenchymal stromal cells
Mesenchymal stem cells, also called as mesenchymal stromal 
cells, are currently being investigated by many researchers as 
potential therapeutic agents [21,22]. MSCs are a promising 
cell source for tissue engineering and cell-based therapeutics 
because of their ability to self-renew and differentiation into 
specific functional cell types [23,24]. MSCs are defined as 
cells capable of expansion, self-renewal and differentiation 
at least to osteocytic, chondrocytic and adipocytic lineages 
after stimulation [25]. Due to the recent progress in stem cell 
biology, the number of tissues with the potential for tissue 
engineering is constantly increasing [26]. MSCs have been 
isolated from several tissues, including BM [14], adipose 
tissue [27-31], dental pulp [32], skin [31,33,34], peripheral 
blood [35], umbilical cord blood [36-39], amniotic fluid [40-
42], amniotic membrane [43,44], placenta [25]. Traditional 
source of MSCs for clinical investigations is BM. Extensive 
studies of BM-derived MSCs (BM-MSCs) have proven 
their multipotent differentiation potential and powerful 
immunosuppressive qualities [45]. However, the collection 
of BM is associated with invasive procedure involving 
significant discomfort to the patient. Moreover, it results in 
a relatively low amount of MSCs (approximately 0.001-0.01% 
of all isolated nuclear cells) in adult human BM, and the 
number of cells decrease with donor ś age [14,46]. MSCs are 
also present in fetal organs, such as liver, BM, kidney, and 
circulate in the blood of fetuses, but their use is subjected 
to ethical considerations [14,28,29]. Searching for easily 
accessible and high-yielding source of stem cells have led 
many investigators to focus on human placenta. Successful 
formation of human placenta which plays a crucial role 
during embryo development, may also represent a reserve of 
undifferentiated cells. Stem cells isolated from human term 
placenta represent many advantages. First of all, non invasive 
procedure is required to obtain the organ. Moreover, there 
are no ethical objections, because the placenta is routinely 
discarded postpartum. Despite of the natural aging process 
of this organ, postpartum placenta still remains a valuable 
source of stem cells.

Human fetal membranes
Human placenta is composed of fetal component, the chorionic 
plate and maternal component–deciduas. The chorionic plate 
consists of connective tissue and forms the wall of the amniotic 
cavity, it contains chorionic arteries and veins. Chorionic plate 
is formed by amnion and chorion strictly adhering to each 
other. On the perimeter amnion and chorion form amniotic 
sac filled with amniotic fluid, providing and protecting fetal 
environment. The inner layer, amnion consists of epithelial 
and stromal layers. The first one is ectodermally derived 
epithelium uniformly arranged on basement membrane, that 
is one of the thickest membranes in human organism. The 
second one is collagen-rich mesenchymal layer, originated 
from extraembryonic mesoderm, and can be divided into 

REVIEW

Stem cell hierarchy
The notion of ‘stem cells’ refers to various types of cells, 
which are unspecialized, undifferentiated cells capable of 
generating one or more cell lineage types of the germ layer, 
and also have the ability to self-renewal. Moreover, these cells 
have a great capacity to differentiate towards different types 
of mature cells. Based on the differentiation potential stem 
cells can be classified into totipotent, pluripotent, multipotent 
and unipotent stem cells. Several varieties of human stem 
cells have been isolated and identified. The most primitive 
stem cell, during human embryo development, presenting 
totipotent potential is zygote or first blastomers, which are 
formed with the first division of the zygote. These cells can give 
an origin to complete embryo and trophoblast development. 
During subsequent divisions morula is formed, which has lost 
totipotential character. These cells are pluripotent capable 
of forming tissues originating in the three germ layers, but 
they have lost the ability to form the trophoblast. A fully 
developed blastocyst contains a group of cells called the 
inner cell mass, which are pluripotent and can give rise to 
all three germ layers [7,8]. More specialized are multipotent 
stem cells that can differentiate into a number of cells, but 
derived from the same germ layer. Multipotent stem cells give 
rise to unipotent stem cells that can generate a single cell type 
characteristic for various tissues and organs [9]. Generally, 
depending on the origin, stem cells have been divided into 
four main groups: embryonic stem cells, fetal stem cells, 
perinatal stem cells and adult stem cells. Embryonic stem 
cells (ESCs) are an example of totipotent cells that can develop 
all the tissues of the fetus. However, the use of embryonic 
stem cells is subjected to ethical and social considerations. 
In addition, because of unlimited ability to proliferate, the 
potential risk of malignancy is higher in comparison to other 
types of human cells. Fetal tissues, as blood, kidney, liver, 
lung are an opulent source of human stem cells, but their 
application also presents the ethical objections. Therefore, 
the use of adult stem cells is increasingly important. Adult 
stem cells can be isolated from several sources, as BM, blood, 
skeletal tissue, adipose tissue, liver, skin and dental pulp 
[10-14]. One of the most investigated example is BM, where 
hematopoietic and non-hematopoietic stem cells can be found 
[15]. BM contains many different kinds of stem cells, which 
are used for organism self-regeneration [14,16]. However, the 
presence of multipotential mesenchymal stromal cells in BM 
has been described by many researchers, it should be noted 
that the cultures of MSCs can be occasionally contaminated 
by pluripotent/multipotent stem cells found in bone marrow 
[6,15,17]. BM harbors endothelial stem cells (ESCs), 
multipotential adult progenitor cells (MAPCs), mesenchymal 
stem cells (MSCs), marrow-isolated adult multilineage 
inducible cells (MIAMIs), very small embryonic-like stem 
cells (VSELs) [15,17-20].
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the compact layer, fibroblast layer and an intermediate layer, 
also called the spongy layer or zona spongiosa. Chorion 
is the outer membrane surrounding fetus, composed of 
trophoblastic chorionic and mesenchymal tissues. During 
enlargement of amniotic cavity, the amnion and chorion 
loosely fuses into single amniochorionic membrane seen after 
delivery [47]. Fetal placenta tissue cell populations consist of 
human amniotic epithelial cells (hAECs), human amniotic 
mesenchymal stromal cells (hAMSCs), human chorionic 
mesenchymal stromal cells (hCMSCs), and human chorionic 
trophoblastic cells (hCTCs).

Human amniotic epithelial cells hAECs
The hAECs forms a monolayer of ectodermally derived 
epithelium uniformly arranged on the basement membrane 
(Fig. 1), which stay in constant contact with amniotic fluid. 
The epithelial nature of hAECs was confirmed by the 

presence of epithelial markers cytokeratin 1, 2, 3, 4, 5, 6, 7, 8, 
10, 13, 14, 15, 16 and 19. Recent reports indicate that hAECs 
express stem cell markers and have the ability to differentiate 
into all three germ layers [48]. After isolation hAECs express 
very low levels of human leukocyte antigen (HLA) – A, B, C. 
During cultures, after passage 2 higher levels HLA antigens 
are observed. Cell surface antigens characteristics for 
hAECs are ATP-binding cassette transporter G2 (ABCG2/
BCRP), CD9, CD24, E-cadherin (CD324), integrins α6 and 
β1, c-met (hepatocyte growth factor receptor), stage-specific 
embryonic antigens (SSEAs) 3 and 4, and tumor rejection 
antigens (TRAs) 1-60 and 1-81. Surface antigens which 
seems to be absent on hAECs are SSEA-1, CD34, CD133. 
CD117 (c-kit) is either negative, or may be expressed on at 
low levels. Although CD90 (Thy-1) is expressed on freshly 
isolated cells at low levels, but the expression of this antigen 
increases significantly in culture [49]. Moreover, the presence 
of epithelial (e.g. E-cadherin, CK7, CD49f, EpCAM) and 
MSC markers (CD44, CD105, CD146) varies during cultures. 
hAECs at P0 present the typical epithelial markers, whereas 
P5 hAECs show expression of CD44, CD105 and CD146 [50]. 
Surface markers are presented in Tab. 1.

In addition to surface markers, hAEC express molecular 
markers of pluripotent stem cells, including octamer-binding 
protein 4 (OCT-4), SRY-related HMG-box gene 2 (SOX-2), 
and Nanog. This suggests that hAECs may be pluripotent 
[48,49].

Mesenchymal stromal cells from amnion and chorion
According to criteria proposed by Dominici et al. [6], for BM-
MSCs, mesenchymal cells isolated from amnion and chorion 
should be defined as mesenchymal stromal cells. Tab. 2 
presents minimal criteria for defining hAMSCs and hCMSCs. 
Human amnion mesenchymal stromal cells (hAMSCs) are 
derived from embryonic mesoderm. These fetal cells express 
low levels of the major histocompatibility complexes (MHC) 
class I and MHC class II antigens on their surface. Like BM-
MSCs, both hAMSCs and hCMSCs adhere and proliferate 
on tissue culture plastic. These cells present characteristic 

Table 1. Specific antigens expressed on human amniotic epithelial cells (hAECs), human amniotic mesenchymal stromal cells 
(hAMSCs) and human chorionic mesenchymal stromal cells (hCMSCs).

Cell type Phenotype References

hAECs

Mesenchymal and embryonic markers: CD90+, CD105+, CD73+, CD44+, CD166+, CD29+, 
HLA-A,B,C+, CD13+, CD24+, SSEA-3+, SSEA-4+, TRA-1-60+, TRA-1-81+, NANOG+, 
SOX2+, SSEA-1-, CD117 (+/- very weak signal), CD49e-
Hematopoietic markers: CD34-, CD45-, CD14-, CD11-, HLA-DR-, CD31-
Others: CD324+, CD349-

[44, 48, 49, 50, 51, 
52, 53]

hAMSCs

Mesenchymal and embryonic markers: CD90+, CD105+, CD73+, CD44+, CD166+, CD29+, 
HLA-A,B,C+, CD13+, CD49d+, CD49e+, CD54+, Oct-3/4+
Hematopoietic markers: CD34-, CD45-, CD14-, CD31-, HLA-DR-, CD133-, CD3-
Others: CD349+, CD140b+, CD324-

[43, 44, 51, 53, 54, 55, 
56, 57, 58]

hCMSCs

Mesenchymal and embryonic markers: CD90+, CD105+, CD73+, CD44+, CD166+, CD29+, 
HLA-A,B,C+, CD13+, CD10+, CD49e+, CD54+, SSEA-4-/+, NANOG+, SOX+, CD117-
Hematopoietic markers: CD34-, CD45-, CD14-, CD31-, HLA-DR-, CD3-, CD133-
Others: CD349+, CD140b+, CD324-

[43, 51, 53, 59]

Figure 1. Hematoxylin and eosin stained human term placenta. 
The amnion is composed of amniotic epithelium (AE) and amni-
otic mesenchymal  stromal layer (AS). The chorionic membrane 
consist of a stromal layer (CS) and chorionic trophoblast cells 
(CT). Under the chorion maternal decidual cells (DC) are pres-
ent. Original magnification x 200.

187



Fetal membrane stem cells

fibroblast-like or spindle-like appearances, form clonal 
colonies and express the typical range of BM-MSC associated 
cell surface antigens. Moreover, these cells can be induced 
in vitro to differentiate into mature cell lineages. hAMSCs 
and hCMSCs express typical mesenchymal markers: CD90, 
CD105, CD73, CD166, CD49e, CD44, CD29 and CD13, but 
they are negative for hematopoietic (CD31, CD34, CD45) and 
monocyte (CD14) markers [60].

Isolation and cultivation of cells from fetal 
membranes
Cells from amnion and chorion can be isolated easily, and 
different methods of cells isolation have been published 
[43,44,49,51,61]. In order to isolate cells from human term 
placenta, amnion and chorion are separated by mechanical 
detachment. Separation is facilitated by the elastin lamina 
present in the loose connective tissue of the amnion. Amniotic 
membrane can be a source of two different types of cells, both 
having stem-cell characteristics.

hAECs are obtained after removal of the epithelial layer of 
amnion. It is performed with a digestion with trypsin, dispase 
or other digestive enzymes, in different concentrations and 
for different periods of time. Second population of cells–
hAMSCs can be gained by a two-step procedure: minced 
amnion tissue is treated with trypsin to remove hAECs, 
and the remaining mesenchymal cells are then released by 
digestion with collagenase or collagenase and DNase. hAECs 
are small-size cells that are easy to expand in vitro cultures 
for at least 3 passages without morphological changes, but 
cells do not proliferate in a low density. They grow in a lattice 
and represent a typical cuboid morphology of epithelial cells. 
Generally, they present a central or eccentric nucleus, one or 
two nucleoli and abundant cytoplasm, usually vacuolated. 
The hAMSCs cells have a fibroblast-like or spindle-shape 
cell morphology typical for mesenchymal stem cells isolated 
from BM. They can be simply expanded in vitro for at least 
9 passages without significant changes in cells morphology. 
Both hAECs and hAMSCs grow in Dulbecco ś modified 

Eagle ś media (DMEM) supplemented with 10-20% fetal 
bovine serum (FBS) and 1% penicillin-streptomycin seeded 
into culture flasks or dishes. These populations should be 
cultivate in a humidified 5% CO2 atmosphere at 37°C. In 
order to demonstrate the purity of isolated cells populations 
it is recommended to perform immunohistochemical staining 
for cytokeratin 7 (CK7), and only hAECs should be positive 
for this epithelial markers. There are contradictions with the 
number of passages at which hAECs and hAMSCs stop to 
proliferate. Miki et al. [49] and Parolini et al. [61] state that 
hAECs grow rapidly for 2 to 6 passages before proliferation 
ceases. On the other hand Diaz-Prado et al. [44] indicate 
that both hAECs and hAMSCs maintain characteristic 
phenotypes from passages P0 to P9. Moreover, Portmann-
Lanz et al. [51] have showed that cells isolated from amniotic 
and chorionic mesenchyme underwent cell death after fourth 
or fifth passage. On the contrary, Soncini et al. [43] confirmed 
in their observations that hAMSCs and hCMSCs can be 
cultured in vitro at least 15 passages without morphological 
alterations, but they studied cells at P4 to cells characterization 
and assessment of multilineage potential.

Human chorionic mesenchymal stromal cells (hCMSCs) 
are isolated from chorion after mechanical and enzymatic 
removal of the trophoblastic layer with dispase. Chorionic 
mesodermal tissue is then digested with collagenase or 
collagenase plus DNase. Contaminating decidual cells can 
be present if mechanical dissection is insufficient and fetal 
genotyping may be needed to evaluate the purity of isolated 
cells. hCMSCs have also been isolated from chorionic fetal 
villi through explant culture, but maternal contamination is 
more likely. Many reports have shown, that placenta-derived 
cells, including hCMSCs, are able to survive during culture 
for 10 passages without significant morphological changes 
[60,62].

Differentiation potential
The differentiation of hAECs has been investigated 
extensively in vitro. Both primary and cells at first passage 
differentiate into lineages derived from ectoderm (neurons, 
astrocytes, glia), mesoderm (osteocytes, adipocytes, 
cardiomyocytes, myocytes) and endoderm (hepatocytes, 
pancreatic cells) [49,51,52,63,64]. It suggests, that hAECs 
have a pluripotent character and can give rise into cells of all 
three germ layers. Ilancheran et al. [52] and Wei et al. [65] 
described differentiation of hAECs into classical mesodermal 
lineages cells as myocytes, osteocytes, chondrocytes and 
adipocytes.

The differentiation of hAECs into cardiac cells was 
firstly investigated and described by Miki et al. [49]. They 
showed by RT-PCR that cardiac-specific genes atrial and 
ventricular myosin light chain 2 (MLC-2A and MLC-2V) 
and the transcription factors GATA-4 and Nkx 2.5 were 
expressed in hAECs cultured in the presence of ascorbic acid 
for 2 weeks. The immunohistochemical analysis of α-actinin 

Table 2. Minimal criteria for defining human amniotic 
mesenchymal stromal cells (hAMSCs) and human chorionic 
mesenchymal stromal cells (hCMSCs).

A specific pattern of surface antigen expression:

CD90 
CD73 
CD105 

 
positive cells (≥95%)

CD45 
CD34 
CD14 

HLA-DR 
negative cells (≤2%)

Adherence to plastic

Formation of fibroblast colony-forming units

Differentiation potential toward one or more lineages, including 
osteogenic, adipogenic, chondrogenic, vascular/endothelial

Fetal origin
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expression was similar to the one reported for hESC-derived 
cardiomyocytes [49].

hAECs express some differentiation markers for neural 
stem, neuron and glial cells such as nestin, GAD (glutamate 
decarboxylase), GFAP (glial fibrillary acidic protein), CNP 
(cyclic nucleotide phosphodiesterase) [49]. Kakishita et al. 
[66] found that human amniotic epithelial cells differentiate 
into neural cells (ectodermal lineage) which also synthesize 
in vitro and release catecholamines such as dopamine (DA). 
This suggests their potential use in the treatment of neural 
degenerative disorders, e.g. Parkinson’s disease.

Under specific conditions hAECs differentiate into 
hepatic-like cells what was demonstrated by Sakuragawa et al. 
[67]. These authors indicated that cultivated hAECs produced 
albumin and α-fetoprotein. Further studies demonstrated that 
these cells present other features associated with hepatocytes, 
such as glycogen storage and expression liver-enriched 
transcription factors, e.g. hepatocyte nuclear factor (HNF) 
3γ and HNF4α, CCAAT/ enhancer-binding protein (CEBP 
α and β) and drug metabolizing genes (cytochrome P450) 
[49,68,69].

Differentiation of hAECs into pancreatic cells 
(endodermal lineage) has been also investigated. Miki et al. 
[49] showed by RT-PCR analysis, that freshly isolated hAECs 
expressed pancreas duodenum homeobox-1 and the mRNA 
expression was maintained when the cells were cultured in 
the presence of nicotinamide. The expression of the early 
pancreatic transcription factor PDX-1 and the downstream 
transcription factors Pax-6 and Nkx 2.2 and the mature 
hormones insulin and glucagon were identified after 14 days 
of culturing with media supplemented with nicotinamide.

Mesenchymal stromal/stem cells from various parts 
of human placenta have been shown to differentiate into 
chondrogenic, osteogenic, endothelial, hepatocytic and 
myogenic lineages, but presenting differences depending 
on the origin of the cells. Both hAMSCs and hCMSCs 
differentiate toward ‘classic’ mesodermal lineages 
(osteogenic, chondrogenic, adipogenic). Moreover, 
differentiation of hAMSCs to all three germ layers–ectoderm 
(neural), mesoderm (skeletal muscle, cardiomyocytic and 
endothelial) and endoderm (pancreatic) – has been described 
[51,56,57,64,65,70-74]. Chondrogenic differentiation was 
investigated by Soncini et al. [43] by incubating cells for 2-3 
weeks in DMEM low glucose containing dexamethasone, 
L-ascorbic acid 2-phosphate, sodium pyruvate, proline, ITS 
(insulin, transferrin, selenous acid) and TGF-β1 in appropriate 
concentration. The ability to undergo chondrogenic 
differentiation was assessed by toluidine blue staining, 
which demonstrated cartilage-specific metachromasia in 
comparison to the cells cultured in control medium [43]. Also 
osteogenic and adipogenic differentiation of hAMSCs was 
presented by Wang et al. [58]. For osteogenic differentiation 
cells were stimulated for 14 days in DMEM supplemented 
with 10% FBS, dexamethasone, sodium β-glycerophosphate 

and ascorbic acid-2-phosphate. For adipogenic differentiation 
cells were incubated in adipogenic medium consisted of 
DMEM with 10% FBS, dexamethasone, indomethacin, 
3-methyl-1-isobutylxanthine and insulin. In order to confirm 
osteogenic differentiation, calcium deposits were analyzed 
using Alizarin red staining. After 14 days of adipogenic 
differentiation cells were stained with Oil Red O to evaluate 
accumulation of lipid-rich vacuoles [58].

Portmann-Lanz et al. [51] demonstrated the mRNA 
expression of myogenic transcription factors such as Myo 
D and Myogenin and the protein expression of desmine 
which confirmed the ability of hAMSCs to myogenic 
differentiation. Alviano et al. [56] confirmed the potential of 
myogenic differentiation of hAMSCs and was the first one, 
who demonstrated angiogenic potential of hAMSCs. Their 
experiment indicated that hAMSCs cultured in presence of 
VEGF expressed endothelial-specific markers such as the 
receptors of the vascular endothelial growth factor 1 and 2 
(FLT-1, KDR), ICAM-1 and also manifestation of CD34 and 
von Willebrand Factor (vWF) positive cells [56].

Additionally, cardiomyogenic potential has been showed 
by Zhao et al. [75]. They demonstrated that hAMSCs 
stimulated with bFGF or activin A expressed Nkx2. – a 
cardiac-specific transcription factor–the earliest marker 
of heart precursor cells in all vertebrates, and ANP (atrial 
natriuretic peptide), which is also a cardiomyocyte-specific 
gene expressed in ventricular myocytes in vivo. Also the 
potential of hAMSCs to differentiate into hepatocytes was 
investigated [72]. To induce differentiation into hepatocytes 
cells were cultured in α-MEM supplemented with 10% 
FBS, human hepatocyte growth factor (hHGF), human 
fibroblast growth factor-2 (hFGF-2), oncostatin M (OSM) 
and dexamethasone. After 3 weeks immunofluorescence 
analysis presented induction of the expression of albumin 
and α-fetoprotein. Furthermore, the storage of glycogen in 
hAMSCs following their differentiation into hepatocytes was 
observed.

In 2008, Tamagawa et al. [76] described differentiation of 
human amnion-derived fibroblast-like cells into neural-like 
cells. In their previous study, the cell populations obtained 
after enzymatic digestion with trypsin-EDTA, collagenase, 
dispase and papain were designated as mesenchymal cells 
derived from human amniotic membrane. However, they 
showed that these cells are not simply mesenchymal cells as 
they can also differentiate into endoderm-derived hepatic 
cells, so they re-designated these cells as human amnion-
derived fibroblast-like cells. After induction of neural cell 
differentiation the expression of neuron-specific genes, such 
as neuron specific enolase (NSE), neurofilament-medium 
(NF-M), β-tubulin isotype III (TUJ1), and glial fibrillary 
acidic protein (GFAP) were analyzed. The expression levels 
after induction of neural cell differentiation were abundantly 
higher in comparison to levels of expression before 
differentiation [76].
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Two different types of primitive cells may be obtained 
from human chorion: chorionic mesenchymal stem/stromal 
cells (hCMSCs) and chorionic trophoblastic cells (hCTCs) 
[67]. hCTCs haven’t been extensievely examinated as well 
little reports of these cells have been published. hCMSCs 
present multipotential character capable of differentiation 
into chondrocytes, osteocytes, adipocytes, myocytes as well 
as neuron-like cells and present comparable or even greater 
differentiation potential than amnion-derived mesenchymal 
cells [43,51,59,60]. It can be associated with different origins of 
both membranes: the chorion is derived from the trophoblast, 
while the amnion arises from the embryoblast. Despite the 
significant differentiation potential displayed by these cells, 
the number of experiments with hCMSCs is limited, probably 
due to their limited survival in advanced passages. Jones et 
al. [59] compared first trimester- and term fetal placental 
chorionic-derived stem cells considering their phenotype, 
growth kinetics and differentiation potential. They indicated 
that first trimester isolated cells shared a common phenotype 
with term placental cells. Both types of cells differentiated into 
osteogenic, adipogenic and neurogenic pathways. However 
first trimester isolated cells present features of earlier stage of 
stemness, such as smaller size, faster kinetics, expression of 
OCT4A variant 1 and greater expression levels of NANOG, 
SOX2, c-MYC, KLF-4. Moreover, transplantation of these 
cells into osteogenesis imperfecta mice improved bone 
quality and plasticity compared to term placenta isolated cells 
[59]. Many studies of human term placenta report that isolated 
cells display multipotential character. However, some reports 
refer to both, fetal and maternal origin of cells [44,54], as well 
as only a maternal origin [77,78]. Furthermore, cells isolated 
from human term placenta are termed as placenta-derived 
mesenchymal stem cells (PD-MSCs) by some authors. 
PD-MSCs also differentiate in vitro into derivatives of the 
mesenchymal cell lineage such as chondrocytes, osteocytes, 
myocytes and adipocytes [51,62,79-81]. Besides hepatocyte-
like cells and neural-like cells differentiation of PD-MSCs 
has been demonstrated [82-84].

Immunomodulatory properties
One of the advantages of cells derived from fetal membranes, 
that makes them useful in stem cell based therapies, is 
their low immunogenicity. hAECs, hASCs, hCMCs lack or 
present very low expression of highly polymorphic HLA 
class I antigens (HLA-A, B, C) and nearly no MHC class 
II (HLA-DP, DQ, DR) on their surface [49,51,52]. These 
cells also do not express co-stimulatory molecules, such as 
CD40, CD40 ligand, CD80 and CD86 [53,85,86]. Cells from 
amnion, chorion and PD-MSCs exert immunosuppressive 
effects via direct suppression of T and B lymphocytes 
proliferation induced by mitogens or alloantigens, often in a 
dose-dependent manner [87-91]. These cells can also secrete 
cytokines engaged in angiogenesis, tissue repair or immune 
modulation, e.g. VEGF, IL-6, IL-11, M-CSF.

Engraftment of amnion and chorion derived cells in 
xenogenic models may lead to avoidance or even active 
suppression of host immune response. Bailo et al. [90] 
confirmed that fetal membranes derived cells fail to induce 
allogenic and xenogenic lymphocyte responsiveness. 
Amniotic membrane is commonly used for transplantation to 
induce epithelialization in burns and skin ulcerations, as well 
as a dressing for wounds or skin grafts [92-94]. Fragments of 
amniotic membrane is also extensively used in the treatment 
of ocular surface reconstruction [95-97]. Amniotic epithelium 
and amniotic membrane stroma is a source of epidermal 
growth factor and keratinocyte growth factor which promote 
wound healing. Furthermore, presence of laminin and type 
VII collagen fibers in the basement membrane of amniotic 
membrane are the basis for the observed epitheliotropic effects 
[98,99]. Their low immunogenicity and anti-inflammatory 
properties allow for using them as an alternative material in 
the field of regenerative medicine.

Paracrine effects
The use of MSCs for tissue repair was initially based on the 
expectation that these cells are able to home and differentiate 
within the damaged tissue into specialized cells. Further 
investigations has been shown that only a small proportion of 
transplanted MSCs play such a role. On the other hand, MSCs 
produce a wide range of cytokines and chemokines which 
show strong local biological activity by means of paracrine 
action, and particularly via cell-derived extracellular vesicles 
[100-102]. These paracrine effects can facilitate stem cell 
homing and differentiation, but also create survival pathways 
for injured cell, as well as elicit anti-inflammatory and general 
reparative actions in damaged areas [103,104]. The question, 
what is more effective in the aspect of tissue regeneration, 
proper MSCs homing and differentiation in the defective area 
or their paracrine reparative action in this area, is open.

Potential clinical application

Neurological diseases
Number of potential clinical applications of placenta-derived 
and fetal membranes isolated cells is in constant growth, 
in particular because of their multilineage differentiation 
potential. Research aimed at intracerebral grafting of 
hAECs for the treatment of mouse model of Parkinson’s 
disease showed that hAECs can synthesize and release 
catecholamine and neurotrophic factors such as nerve growth 
factor, neurotrophin-3and brain-derived neurotrophic factor 
[66,105,106].

Kong et al. [107] determined the survival and 
differentiation of human amniotic cells transplanted into 
the brain of MPTP induced Parkinson’s disease (PD) mice. 
Results indicated that cells survived for at least 4 weeks after 
transplantation and promoted endogenous neurogenesis, 
though no morphological integration was observed.
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Ischemic stroke occurs as a result of transient or permanent 
reduction in cerebral blood flow, resulting in cell death within 
few minutes. In order to treatment of this condition, Liu et al. 
[108] transplanted hAECs into ischemic rats, what resulted 
in significant ameliorate of behavioral dysfunction and also 
reduction of ischemic damage.

Heart diseases
Zhao et al. [75] demonstrated that hAMSCs present 
part of the characteristics of cardiomyocytes, which was 
confirmed by expression of multiple cardiac-related genes 
and proteins. Moreover, they indicated that unstimulated 
hAMSCs cultivated with heart explants can integrate into 
cardiac tissue and differentiate into cardiomyocyte-like 
cells. After transplantation freshly isolated hAMSCs into the 
myocardial infarcts in rat hearts, these cells survived in the 
scar tissue for at least 2 months and also differentiated into 
cardiomyocyte-like cells. The fact that hAMSCs can survive 
in xenotransplantation also suggest their low immunogenicity. 
These results give hope to use hAMSCs as a suitable source 
for the treatment of myocardial infarction in the future.

Lung fibrosis
Cargnoni et al. [109] investigated effects of fetal membrane-
derived cells on a mouse model bleomycin-induced lung 
fibrosis. They isolated hAMSCs, hCMSCs and hAECs from 
fetal membranes and transplanted them as a mixture of 
mesenchymal and epithelial cells in bleomycin-treated mice, 
which represent a widely accepted model of lung interstitial 
fibrosis. They observed that intratracheal and intraperitoneal 
transplantation of cells results in a reduction in lung fibrosis 
process. These findings suggest that fetal membrane-derived 
cells may be useful for cell therapy of fibrotic diseases.

Liver disorders
There are evidence that hAECs are able to synthesis and 
secretion of albumin in a culture. Moreover, β-galactosidase-
tagged hAECs transplanted into immunodeficient mice 
integrated into the liver parenchyma and could be detected 
until 7 day after transpalntation [67]. Albumin synthesis 
capacity, expression of liver lineage markers and low 
immunogenicity suggests their potential use in acute 
liver diseases.

CONCLUSIONS

Human fetal membranes are considered as an alternative and 
readily obtained tissue in the field of regenerative medicine. 
Unlimited availability of fetal membranes, which are routinely 
discarded postpartum, allow to isolate large number of stem 
cells from this tissues. Immunomodulatory properties and 
absence of ethical limitations make them extremely attractive 
and useful for stem cells based regenerative medicine and 

tissue engineering. Stromal and epithelial cells isolated from 
human fetal membranes display some characteristics of 
stem cells. They present great potential to differentiate into 
the all three germ layers cells: endoderm, mesoderm and 
ectoderm, which open a wide perspective of potential future 
clinical applications. Paracrine effects produced by MSCs 
also contribute to the repair processes in the damaged area. 
Nevertheless, further investigations are required to determine 
whether in vitro differentiation potential of these cells can be 
applied on a large scale in the treatment of many diseases.
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