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ABSTRACT

Purpose: It was previously shown that the bacterial two-component regulatory signal transduction (2CR) system MtrAB 
may be associated with the ability of M. tuberculosis (Mtb) to survive in macrophages. In the present work Mtb mutants: 
Rv-78 with overexpression of mtrA and Rv-129 with elevated level of phosphorylation-defective MtrA were used for further 
investigation of the potential influence of the MtrAB system on Mtb interaction with human monocytes.
Material/Methods: Flow cytometry was used to determine the expression of MHC class II molecules. The expression 
of genes for inducible nitric oxide synthase (iNOS) and cathepsin G was quantified by RT-PCR. The association of Mtb 
strains with Rab5 and Rab7 positive vacuoles was investigated applying confocal microscopy. IL-10 and IL-12 secretion by 
monocytes as well as the Mtb susceptibility to cathepsin G were investigated.
Results: Mutation-carried and wild type Mtb strains inhibited MHC class II expression on monocytes to a similar extent. 
Monocyte stimulation with mycobacteria led to the increased production of IL-10 but no detectable amounts of IL-12 or NO 
were observed. Expression of the gene for iNOS was not detected while that for cathepsin G was shown, however its intensity 
was not associated with MtrA mutation. Mtb mutant strains were more effectively enclosed in phagosomes containing the late 
endosome marker Rab7 as compared to the control. 
Conclusions: The results may confirm the importance of the MtrAB system in mycobacterial capacity for successful survival 
in phagocytes, especially in the context of high degree of colocalization of Mtb Rv-78 to mature phagosomes. 
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INTRODUCTION

Mycobacterium tuberculosis (Mtb) is a facultative intracellular 
bacterium which has evolved sophisticated mechanisms to 
evade antimicrobial processes of macrophages. The balance 
between the bactericidal potency of macrophages and the 
evasion strategies of M. tuberculosis regulates the course of 
mycobacterial infection. However, there is an urgent need 
for a better understanding of the mechanisms that allow 

mycobacteria to effectively avoid host immune mechanisms 
and for the identification of M. tuberculosis proteins which 
may serve as effective drug targets. The bacterial two-
component regulatory signal transduction systems (2CRs) 
play an important role in the intracellular survival of M. 
tuberculosis. The systems consist of pairs of sensor and 
regulatory proteins [1-3] which detect signals from the 
external environment, transfer them to the bacterial cells 
resulting in transcriptional responses [4]. The Mtb genome 
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possesses 11 pairs of genes identified as those encoding 2CR 
systems [5], among them only the MtrAB system is absolutely 
essential for mycobacterial growth [6-8]. A previous study on 
M. tuberculosis mutant Rv-78, characterized by an elevated 
intracellular level of the MtrA regulator protein of the MtrAB 
system, showed that overexpression of the mtrA gene results 
in reduced Mtb survival in the monocytic THP-1 cell line and 
blood monocyte-derived macrophages. This phenomenon 
was not observed for the Mtb strains with overexpression 
of individual components of other 2CR systems. This 
allows suggesting that overexpression of mtrA gene is, at 
least partially, responsible for the attenuation of the mutant 
growth not only in vitro but also in the lungs and spleen 
of infected mice [9]. Moreover, the fact that MtrA protein 
targets the dnaA promoter (an essential replication initiator 
gene) and that dnaA transcription in vivo is promoted in the 
MtrA-phosphorylation dependent manner [9] confirms the 
importance of the MtrA overproduction in mycobacterial 
virulence. An M. tuberculosis strain showing an elevated 
level of phosphorylation-defective MtrA (Rv-129) did not 
multiply in macrophages and murine lungs as effectively as 
parental wild-type H37Rv (Rv-wt), however, the expression 
level of dnaA was similar in both strains [9]. It is interesting 
that M. bovis BCG also exhibits prominent upregulation of 
the MtrA protein during growth within macrophages [10-12].

In the present work we further explored a possible 
influence of the MtrAB system on the fate of ingested 
mycobacteria within macrophages. It has been reported 
that the survival of tuberculosis bacilli in macrophages is 
associated with: a) disturbances in the early/late endosome 
transfer or maturation [13-17], b) reduced acidification of 
mycobacterial phagosomes [18, 19], c) downregulation 
of MHC class II molecule expression critical for antigen 
presentation [14, 20, 21], and d) inefficient displacement of 
iNOS (inducible nitric oxide synthase) in the immediate 
vicinity of mycobacterial phagosomes [22, 23]. The results 
of this study show that the MtrAB system may influence the 
intracellular survival of Mtb. This may be accomplished by 
affecting trafficking of the bacteria to mature phagosomes, 
as mycobacterial phagosomes containing the Rv-78 mutant 
more effectively recruited late endosome marker Rab7 than 
did phagosomes containing the Rv-wt strain. No significant 
influence of mtrA expression disturbance on the susceptibility 
of mycobacteria to cathepsin G or on the level of MHC class 
II restriction was observed.

MATERIAL AND METHODS

Mycobacterial strains and culture conditions
The laboratory, virulent wild-type strain of M. tuberculosis 
H37Rv (Rv-wt), M. tuberculosis Rv-wt strain expressing 
green fluorescent protein (Rv-wt GFP), M. tuberculosis Rv-
78 – mutant overexpressing regulatory protein MtrA (Rv-

78), M. tuberculosis Rv-78 expressing GFP (Rv-78 GFP), M. 
tuberculosis Rv-129 mutant producing an elevated level of 
phosphorylation-defective MtrA (Rv-129), M. tuberculosis 
Rv-129 expressing GFP (Rv-129 GFP), attenuated strain M. 
bovis BCG and M. bovis BCG expressing GFP (BCG-GFP) 
were grown in Middlebrook 7H9 medium (Difco, Becton 
Dickinson) enriched with 10% oleic acid-albumin-dextrose-
catalase (OADC, Becton Dickinson), 0.05% Tween 80. 
Antibiotics: hygromycin (Sigma) at 50μg/ml for Rv-78 and Rv-
129, kanamycin (Sigma) at 25μg/ml for M. bovis BCG GFP, 
and both of them for Rv-78 GFP and Rv-129 GFP were used. 
M. tuberculosis H37Rv and M. bovis BCG were a gift kindly 
provided by the Institute of Tuberculosis and Lung Diseases, 
Warsaw, Poland, whereas all M. tuberculosis mutants and M. 
bovis BCG-GFP were generous gifts from the University of 
Texas Health Science Center at Tyler, USA. Bacterial growth 
was estimated by reading the optical density at 600nm. 

THP-1 cells culture
The monocyte-like cell line THP-1 (DSMZ, #ACC16, 
Germany) was grown as previously described [24] with 
minor modifications. Cells were maintained in RPMI-1640 
medium (Sigma) supplemented with 10% fetal bovine serum, 
FBS (PAA, Austria), 2mM L-glutamine and 1mM sodium 
pyruvate and cultured at 37°C, 5% CO2. THP-1 cells were 
differentiated into adherent, well-spread macrophages by the 
addition of 50 nM phorbol myristate acetate, PMA (Sigma) 
and incubated for 48h before the experiment. Adhered 
macrophages (5×105/well) were then washed three times with 
plain RPMI medium and next the cells (in culture medium) 
were exposed to bacteria for 3h at MOI (multiplicities of 
infection) of 5:1 for RT-PCR experiments or 20:1 for confocal 
microscopy. After that, noningested bacteria were removed 
by washing the cell monolayer (three times) with plain 
RPMI 1640 medium. Cells were resuspended in RPMI 1640 
medium supplemented with 2% FBS and cultured 24h or 72h, 
respectively. 

Monocyte isolation and culturing
Peripheral blood mononuclear cells (PBMC) were isolated 
from venous blood of healthy adult volunteers by density 
sedimentation over LSM 1077 separation medium (PAA, 
Austria). Briefly, blood drawn into heparinized vacutainer 
tubes (Kima, Italy) was diluted 1:1 with RPMI 1640 
medium (Sigma), next laid over the LSM 1077 medium 
(4:3) and centrifuged (1200×g for 20 min at room temp.). 
The obtained interphase containing PBMC was collected, 
washed twice with RPMI 1640, and then monocytes were 
isolated using the negative immunomagnetic separation 
MACS system (Miltenyi Biotech, Germany) according to 
the manufacturer’s instructions. 5×105 monocytes in RPMI 
medium (supplemented with 10% FBS and L-Glu) were 
seeded onto a 12-well tissue culture plate and infected with 
different strains of Mycobacterium at MOI of 5:1 for 3h at 
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37˚C, 5% CO2. After that, noningested bacteria were removed 
by washing the cell monolayer (three times) with plain RPMI 
1640 medium. Cells were resuspended in RPMI 1640 medium 
supplemented with 2% FBS and cultured for 24h at 37˚C, 5% 
CO2. The supernatants were collected (stored at -80°C for 
cytokine measurement) and monolayers were washed with 
PBS. Either cells were harvested, counted and used for flow 
cytometry, or treated with TriReagent (mrcGene, USA) for 
RNA isolation.

Flow cytometry analysis
Monocytes stimulated with different mycobacterial strains 
were suspended in 200μl PBS and split into two parts. 5μl 
of fluorescein isothiocyanate (FITC) conjugated antibody 
anti-HLA-DR, DP, DQ (BD Bioscience) was added to the first 
aliquot, and 5μl of isotype-matched control antibody (BD 
Bioscience) was added to the second aliquot. Unstimulated 
monocytes were suspended in 400μl PBS and split into 
4 samples, two of them were processed the same way as 
described, the other two were treated with FITC conjugated 
anti-CD14 and appropriate isotype antibody (BD Bioscience). 
All samples were incubated for 30 min at 4˚C in darkness, 
washed with cold PBS, centrifuged (460×g for 10 min, 4˚C) 
and fixed with 2% paraformaldehyde (PFA) for 15 min at 4˚C. 
Finally, after washing with cold PBS, centrifugation as above, 
the cells were resuspended in cold PBS (250μl) and analyzed 
by FACS LSR II (Becton Dickinson) flow cytometer. The 
emission wavelength was 530 nm, and the excitation was 488 
nm. The obtained data were analyzed using FlowJo software 
version 7.5.5.

For the purpose of the intracellular MHC class II 
expression detection, pellets of monocytes stimulated with 
different strains of mycobacteria were suspended in 100μl 
of Cytofix/Cytoperm Buffer (BD Bioscience) and incubated 
for 20 min at 4˚C to permeabilize and fix the cells. Then, 1 
ml of Perm/Wash Buffer (BD Bioscience) was added and the 
samples were centrifuged (260×g for 10 min, 4˚C). Cells were 
again suspended in Perm/Wash Buffer and stained with anti-
HLA-DR, DP, DQ antibodies as described above (instead BPS 
Perm/Wash Buffer was used). Finally, the cells suspended in 
cold PBS were analyzed by flow cytometry. 

Cathepsin G (CatG) mycobactericidal activity 
assessment
Mycobacterial suspensions were adjusted to 1×106 CFU/ml 
in Middlebrook 7H9 medium and 125μl aliquots were added 
onto a 48-well tissue culture plate. The cells were grown (24h 
up to 5 days, 37˚C) in the presence of cathepsin G (Sigma) at 
different concentrations. After that, serial 10-fold dilutions 
were prepared and 100μl aliquots were plated on 7H10 agar. 
CFU values were determined by colony counting after 2-3 
weeks of incubation at 37˚C in 5% CO2. 

Reverse transcription PCR (RT-PCR) for cathepsin 
G and iNOS encoding genes
Primers (Bionovo, Poland) specific for iNOS and 
Cathepsin G sequences were designed to obtain 671 
bp and 300 bp products, respectively, as described 
[25, 26]. For iNOS: CTACTCCATCAGCTCCTCCC 
and ACAGCACCGAAGATATCTTC, for Cathepsin 
G: AGAAGAGTCAGACGGAACACTGA and 
CCCTGACGACTTTCCATAGGA primers were used 
(upstream and downstream, respectively). The primers 
for β-actin (upstream: TGGAGAAAATCTGGCACC, 
downstream: TGAGGTAGTCAGTCAGGT) to amplify a 300 
bp product of the housekeeping gene served as a control to 
ensure similar starting amounts of cDNA. RNA was isolated 
from THP-1 or monocytes using TriReagent (mrcGene, USA). 
cDNA synthesis was performed using Reverse Transcription 
System (Promega, USA). The reaction mixture (final volume 
20μl) contained 0.5μg RNA. Amplification of the desired 
genes was performed by adding 5μl of cDNA to 25μl Taq 
PCR Master Mix (Qiagen, USA) and 2μl of upstream and 
downstream appropriate primers. The final volume of each 
sample was adjusted to 50μl with nuclease-free water. The 
thermal cycling settings were: 94˚C for 5 min, and next: 40 
cycles of 94˚C for 1 min, 60˚C for 1 min, and 72˚C for 1.5 min 
(in the case of iNOS) or 36 cycles of 94˚C for 45s, 55˚C for 
45s, 72˚C for 45s (in the case of cathepsin G and β-actin). The 
final extension was conducted at 72˚C for 10 min. Products 
of RT-PCR were separated on 1.5% (w/v) agarose gel and 
visualized by ethidium bromide staining. 

Nitric oxide assay
A Griess-reaction based method, described previously 
[27], was used to determine the nitric oxide presence in 
supernatants as NO2¯ following the reduction of NO3 .̄

Cytokine measurement
The culture supernatants from blood isolated monocytes 
stimulated with different mycobacteria strains were collected 
and stored at -80°C. The IL-10 and IL-12 concentrations were 
measured using ELISA kits (eBioscience, USA) according 
to the manufacturer’s instructions. The absorbance of the 
samples was read on the multifunctional microplate reader 
Victor2 (Wallac, Great Britain) at 450nm. 

Confocal microscopy
The microscope slides were prepared as previously described 
[9]. Briefly, 5×105 THP-1 cells were seeded into 24-well 
tissue culture plates containing glass coverslips and infected 
at a MOI of 20:1 with mycobacterial strains expressing 
GFP. After 72h (no apparent damage to the macrophage 
monolayer was observed up to 3 days), the monolayers of 
infected phagocytes were fixed with 4% paraformaldehyde 
(20 min) and permeabilized with 0.1% saponin in PBS (20 
min). Following the blocking with SBP buffer (0.1% saponin, 
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2.0% BSA, PBS; 20 min), the monolayers were treated with 
antibody to Rab5 (Abcam, UK), 250-fold diluted in SBP, or 
antibody to Rab7 (Abcam, UK), 50-fold diluted in SBP. After 
overnight incubation at 4°C the cells were washed three times 
with PBS, and then the monolayers were incubated for 4 h 
at room temperature with rhodamine conjugated secondary 
antibody (Millipore, USA), 100-fold diluted in SBP. Confocal 
analysis was performed in a blinded fashion. Images were 
generated and captured using LSM5 (Pascal) Laser Scanning 
Confocal Microscope (LSCM) equipped with Axiovert 2 
(Zeiss) microscope with objective Plan-Apochromat 100× 
(1.4 oil). Excitation wavelength and filter used for GFP were: 
488nm and BP 505-530nm, respectively, and for rhodamine: 
543nm and BP 560-615nm, respectively. Digital image 
analysis was conducted with Pascal Zeiss software. Each 
bacterium was visually scored for colocalization (yellow) or 
non-colocalization (green) and at least 100 bacteria per strain 
were scored for measurements. 

Statistical analysis 
Results are presented as the mean ± SD. The comparison 
of obtained values from different groups was analyzed as 
indicated in figure legends. Statistical significance was 
considered at p<0.05.

RESULTS

The intra- and extracellular expression of MHC 
class II molecules in monocytes stimulated by 
mycobacterial strains with normal or altered mtrA 
expression
An effective immune response to bacterial infection requires 
the participation of the different parts of the immune system. 
During the course of infection, a prominent role is played by 
both macrophages and CD4+ T cells [28]. These lymphocytes 
recognize mycobacteria-infected mononuclear phagocytes 
through mycobacterial antigens presented to them via MHC 
class II molecules. Faulty transport and processing of MHC 
class II molecules has been postulated to be responsible for 
reducing the expression of these molecules during infection 
[21]. Hence the levels of monocytic MHC class II molecules 
both on the cell surface and intracellularly were determined 
after infection with the studied mycobacterial strains.

The expression of MHC class II molecules on the surface 
and inside the cells (extra- and intracellular expression) 
of monocytes infected with Mtb strains: Rv-wt, Rv-78, Rv-
129 or M. bovis BCG was evaluated using a flow cytometry 
technique. Analyzed data were presented as mean value of 
median fluorescence intensity (MFI) (Fig. 1).

The monocytes stimulated with all mycobacterial strains 
showed a decrease in the MHC class II density not only on the 
cell surface but also inside the cell as compared to unstimulated 
phagocytes. However, no statistically significant differences 

between the wild type and mutant strains, or between mutant 
strains and BCG, were found. This may be due to high inter-
individual variability in the mycobacteria driven responses 
of monocytes isolated from independent blood donors. There 
was a trend towards stronger inhibition of MHC class II 
expression after infection with Rv-wt strain as compared to 
Rv-78 or Rv-129, but this was not statistically significant.

The survival of mycobacterial strains in the presence 
of cathepsin G
Cathepsin G belongs to the group of the host cationic 
antimicrobial peptides (CAMPs), which are a part of the 
innate defense mechanisms. Its production is limited mainly 
to cells of myeloid origin. Granulocytes are the main source 
of cathepsin G, but it is also produced by monocytes and 
mast cells. Amid numerous biological properties of cathepsin 
G, its antimicrobial activity against both Gram-negative 
and Gram-positive bacteria including M. tuberculosis has 
been postulated [29-31]. Here we sought to determine the 
possible effect of MtrA overexpression on Mtb sensitivity to 
cathepsin G.

After 24 h incubation of investigated Mtb strains: Rv-
wt, Rv-78, Rv-129, and M. bovis BCG with cathepsin G at 
the final concentrations: 10µg/ml, 50µg/ml, and 100µg/ml, 
bacteria were plated onto Middlebrook 7H10 solid medium 
and CFU values were calculated for each strain. The results 
are shown in Fig. 2.

All tested mycobacterial strains, regardless of the used 
cathepsin G concentrations, showed growth at similar levels, 
located in the range of 5.263-6.327 (log10 CFU/ml). Since 

Figure 1. Flow cytometric analysis of MHC class II expression. 

Panel a: Surface expression of MHC class II molecules on unstimulated 
monocytes (MØ) or monocytes stimulated for 24h at MOI of 5:1 with live my-
cobacterial strains: Mtb Rv-wt (virulent H37Rv), Mtb Rv-78 overexpressing 
MtrA mutant, Mtb Rv-129 phosphorylation-defective MtrA mutant, M. bovis 
BCG. Data are representative FACS profiles of one experiment, which was 
repeated five additional times, using monocytes isolated from six independent 
donors. Isotype controls are shown in green and cells stained with antibody 
in red. Analogous experiments were performed to determine the degree of 
intracellular MHC class II molecules expression (not shown); Panel b: The 
levels of MHC class II intracellular and extracellular expression of mono-
cytes stimulated with the indicated mycobacterial strains. Data are shown as 
median fluorescent intensity (MFI) values ± SD. The data were analyzed with 
the Kruskal-Wallis test (no statistically significant differences).
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the survival of the tested strains after 24h did not differ 
significantly from that in control samples, the mycobacterial 
strains were subjected to prolonged incubation (72 hours and 
120 hours) with cathepsin G at the concentration of 100µg/ml. 
All tested strains reached a similar growth level, in the range 
of 4.465-5.240 log10 CFU/ml. The obtained values   for control 
samples were also similar to each other (the lowest value was 
4.543 and the highest 5.409) and did not differ significantly 
from the corresponding tested samples with cathepsin G, 
with the exception of the M. bovis BCG sample. After 5 days 
of culturing M. bovis BCG with 100µg/ml cathepsin G, a 
statistically significant (p<0.032) lower number of CFU was 
obtained as compared to the number of CFU obtained from 
control mycobacteria cultured with no cationic peptide (data 
not shown). 

Expression of genes for iNOS and cathepsin G in the 
cell line THP-1 and human monocytes stimulated by 
mycobacterial strains with normal or altered mtrA 
expression 
In response to infection activated macrophages produce 
both reactive oxygen intermediates (ROI) and reactive 
nitrogen intermediates (RNI) that exhibit antimicrobial 
action. Inducible nitric oxide synthase (iNOS) is an enzyme 
responsible for RNI generation [32, 33]. It has been shown 
that mycobacterial infection could be associated with the 
decline in production of nitric oxide [22]. Moreover, it has 
been reported that macrophage Mtb infection could lead to 
a decrease in the mRNA expression of cathepsin G [34]. 
This suggests that such decrease may be a mechanism that 
is responsible for mycobacterial survival in the hostile 
environment inside the phagocytes. Thus we decided to 
examine the possible influence of tested mycobacterial strains 
on the expression of genes encoding iNOS and cathepsin G in 
the infected mononuclear phagocytes.

The expression of genes for inducible nitric oxide 
synthase (iNOS) and cathepsin G in THP-1 cells and isolated 
from blood monocytes stimulated with studied mycobacterial 
strains are shown in Fig. 3, and the β-actin housekeeping 
gene is shown as a positive control. 

After electrophoresis and staining with ethidium 
bromide, visible bands indicated the expression of genes 
for β-actin and cathepsin G. In THP-1 cells the cathepsin G 
gene expression remained unchanged regardless of whether 
the tested cells were stimulated with different mycobacteria 
strains or they were not stimulated (analysis with use of 
Kruskal-Wallis test; H=0.52, p=0.97). In the case of blood 
monocytes, densytometric analysis exhibited no differences 
in cathepsin G mRNA expression after stimulation by Rv-wt, 
Rv-78 or Rv-129. CatG expression was lower in monocytes 
stimulated with the different Rv strains than in unstimulated 
monocytes or monocytes stimulated with BCG (Fig. 3, panel 
c). Although the Kruskal-Wallis test indicated the statistical 
significance (H=10.43, p=0.03), the intergroup analysis did 
not show any significant differences. 

Neither THP-1 cells or monocytes responded to stimulation 
with mycobacteria at the tested MOI with detectable 
expression of the iNOS gene. The lack of measurable nitric 
oxide (NO) amount in the culture supernatants (by the Griess 
reaction) may support that observation (data not shown).

Figure 2. The survival of mycobacterial strains in the presence 
of cathepsin G. 

Mycobacterial suspensions (1 × 106/ml) of Mtb strains: Rv-wt (virulent 
H37Rv), Rv-78 overexpressing MtrA mutant, Rv-129 phosphorylation-defec-
tive MtrA mutant, and M. bovis BCG were incubated in the presence of differ-
ent concentrations of cathepsin G. The number of colony forming units (CFU) 
of surviving bacilli is shown as mean values ± SD from three independent 
experiments. The data were analyzed with the Kruskal-Wallis test (no statisti-
cally significant differences).

Figure 3. Detection of cathepsin G and iNOS gene expression in 
human monocytes (Panel a) and monocytic THP-1 cells (Panel b) 
using RT-PCR analysis. 

Monocytes were unstimulated or stimulated for 24h at MOI of 5:1 with my-
cobacterial strains: lane 1 - Mtb Rv-wt (virulent H37Rv), lane 2 - Mtb Rv-78 
overexpressing MtrA mutant, lane 3 - Mtb Rv-129 phosphorylation-defective 
MtrA mutant, lane 4 - M. bovis BCG, lane 5 - monocytes with no stimulants. 
The β-actin housekeeping gene was used as a control of equal amounts of 
cDNA in each lane. Presented panels show a representative image from three 
independent experiments. Densitometric evaluation of signal strengths and 
normalization to the corresponding β-actin expression were conducted to 
quantify the expression intensity of cathepsin G. The expression is shown as 
the absolute values (Panel c). The data were analyzed with the Kruskal-Wallis 
test (no statistically significant differences).
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Mycobacteria driven IL-10 and Il-12 production
The balance between the Th1 and Th2 response is considered 
to be crucial for determination of the outcome of an Mtb 
infection [35]. The amount of IL-12 and IL-10 (critical for Th1 
and Th2 type cell response, respectively) secreted by infected 
monocytes was thus quantified.

In this study, no measurable IL-12 was observed in the 
culture supernatants from monocytes stimulated with Rv-wt, 
Rv-78, Rv-129 or M. bovis BCG. Nor did the unstimulated 
monocytes release any detectable amounts of IL-12. In 
contrast, significant amounts of IL-10 (which exceeded 
the sensitivity of the test: 2 pg/ml) were detected in the 
supernatants. The results are shown in Fig. 4. 

Unstimulated monocytes produced IL-10 at a low level 
(6pg/ml) which was markedly increased after stimulation. 
Intergroup analysis showed significant differences between 
cells unstimulated and stimulated with Mtb Rv-wt as well 
as between unstimulated cells and cells stimulated with M. 
bovis BCG. No statistically significant differences between 
the tested mycobacterial strains were found. However, there 
was a trend towards Rv-78 and Rv-129 mutants being weaker 
stimuli for IL-10 production by monocytes than wild type. 
Interestingly, there were no significant differences in the 
production of IL-10 by monocytes stimulated with Rv-wt 
and the vaccine M. bowis BCG strain. The high standard 
deviation values may reflect high intra-individual variability 
in the monocyte response to mycobacterial stimulation. 

Rv-78 colocalization with vacuoles containing Rab5 
or Rab7 markers
Mononuclear phagocytes infected with Mtb display a 
deficiency in the fusion of mycobacterial phagosomes with 
lysosomes [14, 15, 16, 17]. Upon ingestion by macrophages, 

live mycobacteria localize to phagosomes containing 
markers of early but not late endosomal structures [13, 17]. 
Using mycobacterial strains expressing green fluorescent 
protein (GFP), we examined intracellular trafficking of 
bacteria inside THP-1 macrophages. Phagocytes were stained 
with monoclonal antibodies to Rab5 or Rab7 followed by 
secondary antibodies conjugated to rhodamine.

We observed highly effective colocalization of all 
the mycobacterial strains tested and the early endosome 
marker Rab5 (70-80% of the bacteria resided in Rab5-
positive vacuoles). In the case of colocalization with the late 
endosomal marker Rab7, however, significant differences 
between the strains appeared, particularly between Rv-78 
and Rv-wt strains and between BCG bacilli and Rv-wt. The 
degree of colocalization of Rv-78 with Rab7 was high and 
comparable with that observed for Rab5. In contrast, less than 
40% of Rv-wt-containing phagosomes colocalized with Rab7. 
Limited colocalization of Rv-wt with Rab7 suggests reduced 
phagosomal acquisition of this marker, and thus impaired 
phagosomal maturation.

DISCUSSION

Macrophages are among the first immune cells interacting 
with mycobacteria entering the host. The current view is that 
Mtb interactions with macrophages are dominated by the 
ability of the pathogen to inhibit phagosomal maturation [36]. 
However many questions remain to be answered regarding 
how mycobacteria mount the mechanisms that permit Mtb 
survival within macrophages. Genes encoding proteins 
involved in receiving and processing of information at both 
the inter- and intracellular levels are crucial for modulation 

Figure 4. Production of IL-10 by monocytes infected with differ-
ent mycobacterial strains.  

The cells were unstimulated (only monocytes, MØ) or stimulated for 24h at 
MOI of 5:1 with mycobacterial strains: Mtb Rv-wt (virulent H37Rv), Mtb Rv-
78 overexpressing MtrA mutant, Mtb Rv-129 phosphorylation-defective MtrA 
mutant or M. bovis BCG. Data (five independent experiments) were analyzed 
with Kruskal-Wallis test (H=13.18, p=0.01), post-hoc median test. *p=0.01 
MØ vs Mtb Rv-wt, **p=0.02 MØ vs M. bovis BCG.

Figure 5. Colocalization of green fluorescence protein (GFP, 
green) expressing M. tuberculosis strains: wild-type (Rv-wt), 
overexpressing mtrA (Rv-78), phosphorylation-defective mtrA 
(Rv-129) and M. bovis BCG with Rab5 or Rab7 in THP-1 cells. 

Infected cells were immunofluorescently stained for Rab5 and Rab7 (red). Yel-
low color indicates colocalization. Values shown are mean percentages (±) of 
colocalization from three independent experiments. *p=0.015, **p=0.0041 
(Kruskal-Wallis test, H=14.207, p=0.0026, post-hoc median test); ap=0.0012, 
bp=0.037 (Mann-Whitney U test).

177



Monocyte response to Mtb with elevated MtrA

of life processes in bacteria, allowing microorganisms to 
adapt to changing environmental conditions by regulating the 
expression of appropriate genes [4, 9]. The current study was 
aimed at further investigation of the MtrA protein, belonging 
to the MtrAB mycobacterial signal transduction system, in 
the interplay between M. tuberculosis and mononuclear 
phagocytes. Rv-78 (with overexpression of mtrA gene) and Rv-
129 (with elevated level of phosphorylation-defective MtrA), 
derived from the virulent reference M. tuberculosis H37Rv 
strain, were used, as well as M. bovis BCG. Upregulation of 
MtrA has been observed during intramacrophage growth of 
M. bovis BCG whereas the level of MtrA in M. tuberculosis 
remains unchanged after entry into mononuclear phagocytes. 
We have previously shown that the Mtb mutant with an 
elevated level of MtrA exhibits attenuated growth not only 
in the THP-1 cell line but also in vivo in murine lungs and 
spleens, and its growth attenuation phenotype is accompanied 
by elevated expression of mtrA [9]. 

Phagocytes possess a number of mechanisms that allow 
them to inactivate ingested bacilli. Reactive nitrogen and 
oxygen intermediates (RNI, ROI) as well as anti-bacterial 
cationic peptides generated by phagocytes are important 
agents for intracellular killing. Additionally, macrophages 
bind processed bacterial peptides, which are recognized by 
specific T cells via MHC class II presentation. Both activated 
macrophages and T cells release cytokines regulating the fate 
of mycobacteria within macrophages and consequently in the 
infected organism [14, 15, 20, 28, 30, 32]. We observed that 
blood monocytes isolated from healthy donors as well as THP-
1 cells, which are able to produce nitric oxide in response to 
LPS or silica [37], did not show expression of the gene for 
inducible nitric oxide synthase (iNOS) when stimulated by 
tested mycobacteria strains. We also did not detect the nitric 
oxide intermediates in monocyte culture supernatants. It can 
be suspected that in our experiments the phagocytes were not 
sufficiently stimulated to launch the expression of iNOS or 
that the commonly used colorimetric method of NO detection 
was not sensitive enough, as reported by Jagannath et al. [38]. 
Similarly to our results Aston et al. [26] reported the lack of 
iNOS mRNA in human macrophages after stimulation with 
mycobacteria or IFN-γ together with LPS. While the role of 
nitric oxide in the protection against mycobacteria in mouse 
macrophages has been well demonstrated, the role of nitric 
oxide in human mononuclear phagocytes is a debated issue 
[38]. Facchetti et al. [39] reported that monocytes isolated 
from healthy donors produced only a small, if any, amount 
of iNOS, whereas a high level of this enzyme was detected 
in the monocytes located in mycobacterial granulomae. This 
may indicate that iNOS gene expression requires signals 
only present in the granuloma microenvironment. The role 
of nitric oxide in the elimination of various bacterial [40, 
41], parasite [42-44], fungal [45] or viral [46] pathogens has 
been reported but the exact mechanism by which nitric oxide 
participates in pathogen elimination remains obscure [47, 

48]. One of the explanations could be apoptosis induction in 
infected host cells [49]. Nitric oxide has antibacterial effects 
on mycobacteria [38, 50, 51] however, the susceptibility of 
Mtb to nitric oxide intermediates depends on the bacterial 
strain, RNI concentration and time of interaction [52-54]. 
Surprisingly, in the case of human mononuclear phagocytes, 
despite using comparable techniques, variable results have 
been obtained in different research laboratories, possibly due 
to subject heterogeneity in terms of genetic polymorphisms 
of iNOS, or to the antagonistic effects of the used stimulatory 
agents depending on the concentration and sequence of the 
stimulation [55, 56].

It has been found that the presence of cationic sequences 
in the cathepsin G molecule provide the peptide with 
antimicrobial capacities against both gram-positive and 
gram-negative bacteria [57-59]. In addition, cathepsin G 
exhibits immunoregulatory propeties, e.g. in vitro it possesses 
chemotactic activity for monocytes and lymphocytes, and 
may act as a mitogen for T and B cells [30]. Rivera-Marrero 
et al. [25] observed a coincidence in downregulation of catG 
in Mtb infected THP-1 monocytes with enhanced bacillary 
multiplication within the cells. Herein, we show that in 
vitro cathepsin G, in the tested range, had no effect on the 
survival of mycobacteria, except for BCG, whose growth 
was limited after 5 days culturing with cathepsin G at 100µg/
ml. It is possible that in vivo cathepsin G contributes to 
the killing of mycobacteria indirectly through its effect on 
the inflammatory response. The role of cathepsin G in the 
course of tuberculosis is not clear but cathepsin G seems to 
be of importance since mouse infection with M. tuberculosis 
leads to downregulation of catG expression, whereas the 
expression of genes for acidic-type cathepsins (D and B), as 
well as for cathepsin H are upregulated [34]. The limitation 
in cathepsin G production could be a mycobacterial defense 
mechanisms, enabling bacterial survival within the hostile 
phagocyte environment. Although cationic antimicrobial 
peptides (CAMPs) alone may not be effective at physiological 
concentrations, their use as the supplement to conventional 
anti-TB antibiotics can make them much more effective and 
has potential to improve the therapeutic effectiveness as it 
was shown by Fattorini et al. [60]. The THP-1 cells used in 
our study were a relevant model for cathepsin G investigation 
as this protein is one of the three most abundant gene 
products of these cells, in addition to neutrophil elastase 2 
and proteinase 3 [61]. However there were no differences 
between catG expression in unstimulated THP-1 cells and 
cells stimulated with Mtb mutants or BCG. Experiments with 
blood monocytes also did not show any significant differences 
between the mycobacterial strains, although there was a trend 
towards lower catG expression after infection with Rv-wt, 
Rv-129 and Rv-78 than with M. bovis BCG or in unstimulated 
cells. This may suggest that disturbed functioning of the 
MtrAB system does not affect the bacterium’s ability to alter 
monocyte CatG expression.
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The inhibitory effect of mycobacteria on the MHC class 
II expression in monocytes was reported by Noss et al. 
[20]. Although not statistically significant, our observations 
are consistent with this study. Comparable trends towards 
downregulation of MHC class II expression observed after 
exposure to Rv-78, Rv-129 and fully virulent Rv-wt may 
suggest that MtrA is not involved in the MHC class II reduction 
associated with mycobacterial infection. Decreased density 
of MHC class II on Mtb infected monocytes has been shown 
to be a consequence of defective transport and processing 
of class II molecules through the endosomal/lysosomal 
system [21, 62] and/or diminished MHC class II mRNA 
expression [20] and could lead to the suppression of antigen 
presentation function. A mycobacteria-induced reduction 
in the processing of MHC class II α and β chains, shown 
by Sendide et al. [63], could also suppress the interaction of 
macrophages with T cells. The defective maturation of MHC 
class II molecules was, at least partially, associated with the 
inhibition of cathepsin S expression following mycobacterial-
driven intensification of IL-10 production. It appeared that the 
use of anti-IL-10 Abs can reverse the inhibition of cathepsin 
S leading to the effective presentation of mycobacterial 
antigens to T cells. Markedly induced secretion of IL-10 has 
been observed in macrophages and dendritic cells infected 
with M. tuberculosis [64, 65]. 

In the present study, the IL-10 production by monocytes 
was induced by all tested mycobacterial strains. The lack of 
significant differences in the levels of the virulent Rv-wt- or 
attenuated M. bovis BCG-induced secretions of IL-10 are 
consistent with previous reports indicating that induction of 
IL-10 does not correlate with mycobacterial virulence [66]. 
The trend towards decreased expression of MHC class II 
on monocytes infected with all tested mycobacterial strains 
could be the effect of the observed IL-10 release, as reported 
elsewhere [67, 68]. Overexpression of the mtrA gene in the Rv-
78 mutant seemed to affect neither the level of IL-10 secretion 
nor the inhibition of MHC expression. We did not observe 
detectable levels of IL-12 in phagocyte cultures stimulated 
with the tested strains. As reported by Giacomini et al. [65] 
and Hickman et al. [69], stimulation of macrophages with 
Mtb does not necessarily lead to secretion of IL-12, even after 
prolonged infection time or higher bacteria-to-cell ratios. 
This can be detrimental for mycobacteria-infected hosts 
because IL-12 promotes the protective immune response [70]. 
Contrary to IL-12, IL-10 inhibits the synthesis of chemokines 
and proinflammatory cytokines as well as iNOS expression, 
which may result in the impairment of protective immune 
mechanisms [71]. 

One of the mycobacterial strategies that allow the bacilli 
to survive inside mononuclear phagocytes is the arrest of 
the maturation of the phagosome into a phagolysosome. The 
vacuole with trapped live, virulent, bacteria remains at the 

early stage of maturation (relatively high pH of 6.3) and fails 
to fuse with bactericidal lysosomes (pH 4.5) [72]. Phagosomal 
maturation is the results of series of fusion and fission events 
between the phagocytic vesicle and endocytic organelles, 
and as the phagosome matures into a phagolysosome, 
successive recruitment and shedding of specific markers can 
be observed, including Rab5 (early endosomal marker) and 
Rab7 (late endosomal marker) [73]. Maturation arrest upon 
mycobacterial infection has been found to result in retention 
of Rab5 and deficient recruitment of Rab7 [14, 74]. 

We investigated whether the disturbance in MtrAB 
system of M. tuberculosis could influence the maturation of 
mycobacteria-containing phagosomes. The high degree of 
colocalization for Rab5 and low for Rab7 in the case of Rv-
wt-containing phagosomes may suggest that the maturation 
of Mtb Rv-wt-containing phagosomes was limited. The 
phagosomes containing MtrAB mutants (especially Mtb Rv-
78) exhibited high colocalization with Rab5 and relatively 
high colocalization with Rab7, which may imply that 
overexpression of mtrA could be accompanied with more 
effective phagosomal maturation. This may be supported by 
our previous observation that the Mtb mutant with elevated 
MtrA exhibits attenuated growth in macrophages and in the 
lungs and spleens of infected mice [9]. Moreover the influence 
of altered expression of the mtrA gene on the phagosome 
maturation process is supported by the observation that Rv-
78 displays increased association with LAMP-1 positive 
vacuoles as compared to Rv-wt [9]. It has been suggested that 
phagosome maturation can be affected by the interaction of 
Rab7 with Rab7-interacting lysosomal protein (RILP) [75], 
accessibility to iron [76], or additional processes involving 
phosphatidylinositol 3-kinase engagement [77]. It is widely 
accepted that internalized mycobacteria are trapped in 
maturation-defective phagosomes, but there are also 
controversial opinions on the localization of Mtb inside the 
host monocyte/macrophage cells as it has been reported that 
tubercle bacilli are capable of escaping into the cytosol [36]. 

CONCLUSIONS

In this study we confirmed the importance of the MtrAB 
system in the interaction of Mycobacterium tuberculosis with 
mononuclear phagocytes. The MtrA protein of this system 
seems to be an important attribute of this pathogen allowing 
it to disturb immanent macrophage phagosome-lysosome 
trafficking and thus to evade antimicrobial processes. The two 
Mtb strains with mutations in mtrA gene will be useful tools 
in an extended study aimed to define precisely the molecular 
bases of intracellular survival of virulent tuberculosis bacilli 
leading to chronic TB infection or disease. 
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