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ABSTRACT

Purpose: Automatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between 
brain function and lesion locations in large-scale epidemiologic studies, such as the ACCORD-MIND study. In this manuscript 
we describe the design and evaluation of a Bayesian lesion-segmentation method, with the expectation that our approach would 
segment white-matter brain lesions in MR images without user intervention. 
Materials and Methods: Each ACCORD-MIND subject has T1-weighted, T2-weighted, spin-density–weighted, and FLAIR 
sequences. The training portion of our algorithm first registers training images to a standard coordinate space; then, it collects 
statistics that capture signal-intensity information, and residual spatial variability of normal structures and lesions. The 
classification portion of our algorithm then uses these statistics to segment lesions in images from new subjects, without 
the need for user intervention. We evaluated this algorithm using 42 subjects with primarily white-matter lesions from the 
ACCORD-MIND project.
Results: Our experiments demonstrated high classification accuracy, using an expert neuroradiologist as a standard.
Conclusions: A Bayesian lesion-segmentation algorithm that collects multi-channel signal-intensity and spatial information 
from MR images of the brain shows potential for accurately segmenting brain lesions in images obtained from subjects not 
used in training.
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INTRODUCTION

White-matter lesions (WMLs) are common findings in 
magnetic-resonance (MR) brain examinations of elderly 
subjects [1-3]; they are usually caused by diseases, such as 
hypertension and diabetes [4]. MR techniques manifest WMLs 
because of their increased tissue-water content, or loss of 
myelin. On T1-weighted images, lesions appear hypointense 
or isointense relative to normal brain, and on T2-weighted, 
spin-density (SD)-weighted, and FLAIR images, these lesions 
appear hyperintense. Because of this high tissue contrast, large-
scale epidemiological studies of cardiovascular risk factors 
have increasingly relied on MR examination to determine the 
effects of these conditions on the brain. 

Manual segmentation is the most common way to 
delineate WMLs, but this process is very time consuming, and 

may suffer from poor inter-rater reliability. To simplify this 
process, some researchers involved in studies of large cohorts 
have adopted simplified assessment scales for brain lesions 
[2,5], which provide only regions (e.g., “infratentorial”), rather 
than coordinates, to describe lesion locations. Furthermore, 
segmentation results may differ among raters, or even for the 
same rater at different times; automated techniques promise 
greater reliability [6,7]. Such considerations are particularly 
relevant to longitudinal studies involving hundreds, or perhaps 
thousands of subjects, such as the Cardiovascular Health Study 
[2,5] or the ACCORD-MIND study [8]. 

Despite the potential advantages of automated brain-lesion 
segmentation, manual segmentation continues to be favored, 
due to the difficulty of automatically segmenting brain lesions, 
as well as the lack of software that can be adapted to a variety 
of lesions. 



183Herskovits EH, Bryan RN, Yang F

To address these challenges of automation and generalizability, 
researchers have proposed many different brain-lesion 
segmentation algorithms [6,7,9-15]. These methods can be 
grouped into semi-automatic and fully automatic classification 
methods. Algorithms that require nontrivial user intervention 
(i.e., mouse operations, or the specification of more than a few 
parameters) [6,7,12] are semi-automatic. Although many of 
these methods are less time-consuming and are more reliable 
than manual segmentation, even semi-automatic methods may 
not be scalable to studies involving thousands of subjects. 

For the segmentation of large numbers of images, fully 
automatic methods [11,13-15] are required; however, some of 
these approaches may still require nontrivial user input. For 
example, Anbeek et al. used a K-nearest neighbor classifier 
to segment lesions [15], and van Leemput et al. segmented 
MS lesions as outliers of normal-tissue intensity models [13]. 
They performed intensity-based brain-tissue classification, 
in which those voxels that are not well classified by these 
intensity models are identified as lesions. In van Leemput’s 
method, there is a user-determined parameter κ, which affects 
the segmented lesion yield: larger κ yields more segmented 
lesions, at the risk of a higher false-positive rate. Admiraal-
Behloul described a method based on clustering and reasoning 
[14]. This approach includes ad-hoc techniques to reduce the 
false-positive rate; they allow the user to delineate manually 
regions in the template in which lesions cannot occur. 

Our aim is to design, implement and evaluate a fully 
automatic brain-lesion–segmentation method suitable for the 
processing of image data from thousands of subjects. Toward 
this end, we propose a novel segmentation algorithm based on 
Bayesian methods for combining multivariate signal-intensity 
and spatial information. Our method is supervised; we use 
data from a training set to determine classification statistics. 
In contrast to most other segmentation methods [11,13-15], 
our approach is fully automatic; it uses only these statistics to 
classify new subjects. We performed experiments to determine 
whether our method detects brain lesions accurately, runs 
efficiently, and is robust to scanner variability, which is vital 
for multi-site trials. We tested our approach using data from 
the ACCORD-MIND study, a prospective study of adult 
diabetics with minimal or no baseline neurological disease; 
thus, we expected that most subjects would have few or no 
brain lesions, and that any brain lesions found would be 
vascular (e.g., microvascular white-matter lesions, or old 
lacunar strokes). 

MATERIALS AND METHODS

Materials
This research was approved by the University of Pennsylvania 
Institutional Review Board, and by the ACCORD-MIND 
review board. We obtained MR images of the head, including 
T1-weighted, T2-weighted, spin-density-weighted and FLAIR 

sequences, for 42 subjects at either of two sites from the 
ACCORD-MIND study: 30 examinations had been acquired 
from Hennepin County Medical Center, Minneapolis, 
MN, using a 1.5T Philips Intera instrument (site 1), and 12 
examinations had been acquired at the Winston-Salem, NC 
site, using a 1.5T General Electric LX instrument (site 2). 
The resolution of the T1 sequence was 0.9375 mm × 0.9375 
mm × 1.5 mm; for other sequences, the resolution was 0.9375 
mm × 0.9375 mm × 3 mm. Field of view was 240 mm for 
all sequences. The acquisition parameters for the Philips 
instrument were (TR/TE/TI, ms): T1: 21/8, T2: 2630/100, 
SD: 2630/27, FLAIR: 8000/100/2400; those for the General 
Electric instrument were: T1: 24/8, T2: 3200/122, SD: 
3200/30, FLAIR: 8002/100/2000.

To provide a ground-truth data set, a senior neuroradiologist 
(RNB) manually labeled brain lesions for all subjects, relying 
primarily on FLAIR images, but with access to all sequences 
for each subject. Criteria for lesion identification were similar 
to those used in the Cardiovascular Health Study [2, 5]. 

Segmentation Method
Theory and Assumptions
For multi-channel image data, we use ( )vv IL ,  to denote the 
location and the n-channel signal-intensity information of a 
voxel ν, respectively. In order to capture normal anatomic 
variation, we applied an elastic-registration algorithm [16,17] 
to transform each subject’s MR images to a standard coordinate 
space D; we refer to this step as spatial normalization. 

Given the registered multi-channel image data O , our task 
is to classify each voxel into one of the tissue classes, yielding 
the segmented image S. According to Bayes’ theorem, we 
obtain the optimal segmentation S* by maximizing ( )OSP | : 

( )OSPS
S

|maxarg* = . 

To determine which statistics to collect from the 
training set, we make the following assumptions: 
Assumption 1 The classification C of each voxel is independent 
of the classification of every other voxel.
Thus,

 ( ) ( )


v
vv

CS
LICvPOSP ,|maxarg|maxarg ∈= .         (1)

This assumption allows us to optimize the classification of 
each voxel independently, greatly simplifying the algorithm, 
at the expense of ignoring interactions among voxels. 
By Bayes’ rule, 
             ( ) ( ) ( )
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Since ( )vv LIP ,  is constant for each voxel across all classes, 
we obtain: 

            ( ) ( ) ( )CvPCvLIPLICvP vvvv ∈∈∝∈ |,,| . 
Assumption 2 Lν and Iν are conditionally independent of each 
other, given knowledge of the class to which ν belongs: 

             
( ) ( ) ( )CvLPCvIPCvLIP vvvv ∈∈=∈ |||, , 

or, equivalently, 

        
( ) ( ) ( ) ( )CvPCvLPCvIPLICvP vvvv ∈∈∈∝∈ ||,| .     (2)



184 Automated Bayesian Segmentation of Microvascular White-Matter Lesions in the ACCORD-MIND Study

In other words, we assume that there is no association between 
signal intensity and location within a brain structure of 
interest; the distribution of signal intensity within a structure 
is stationary. Note that this assumption is one of conditional, 
rather than of marginal, independence; if we do not know 
the classification of a voxel, its intensity and location are not 
independent of each other. In our application, by choosing 
classes or structures that have stationary signal-intensity 
distributions, we ensure that this assumption is valid. 
Assumption 3 The signal-intensity noise in the image is 
white, additive, Gaussian, and tissue-independent. Under this 
commonly made assumption, the signal-intensity distribution 
of each class assumes a multivariate-normal distribution: 

( )
( )

( ) ( )

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
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where μ
C
 and Σ

C
 are the mean vector and covariance matrix for 

class C, respectively. 
To construct a training set, we manually delineated 

lesions, then registered the images to a standard coordinate 
space. Although our algorithm could handle a much larger list 
of classes, for the purposes of the ACCORD-MIND study we 
consider four classes for classification: GM, WM, CSF, and 
lesions. 

Our algorithm used the registered, segmented training 
data to compute the fractions of voxels in the training set 
that belonged to each class, to estimate ( )CP . In addition, 
our algorithm computed μ

C
 and Σ

C
 for each class to estimate 

the signal-intensity distribution for each class. Finally, our 
algorithm computed ( ),| CvLP v ∈  the fraction of all training-
set voxels in class C that were found at location ν. 

Using only the signal-intensity, spatial, and prior 
distributions for each class, our algorithm can apply Equations 
1 and 2 to each voxel ν, labeling it as a lesion if the lesion 
class is most likely. Note that segmented lesions are localized 
in the standard coordinate space D; if necessary, we can use 
the inverse of a subject’s spatial-registration transformation to 
register each segmented lesion back into that subject’s original 
coordinate space. 

Fig. 1 provides an overview of the training and lesion-
segmentation processes. Before training or segmentation can 
occur, we perform a series of image-preprocessing steps, 
described in the next section; only skull stripping is not 
fully automated. In the training process, we compute three 
distributions for each class: the prior, ( )CP ; the spatial 
model, ( )CvLP v ∈| ; and the signal-intensity distribution 
parameters, Cµ  and CΣ . In the lesion-segmentation process, 
new images are preprocessed, and are then classified based on 
Equations 1 and 2.

Image Preprocessing
Before we can use a subject’s images for training or lesion 
detection, we must perform five preprocessing steps: co-
registration of sequences; skull stripping, to remove non-brain 
tissues; segmentation into gray matter (GM), white matter 
(WM), and cerebrospinal fluid (CSF); spatial normalization 

to bring that subject’s sequences into alignment with a 
spatial standard that is common to all subjects; and intensity 
normalization, to ameliorate the effects of different scanners. 
The result of these image-processing steps is a set of sequences 
normalized with respect to spatial and signal-intensity 
characteristics.

Co-registration
Because the MR sequences cannot be acquired simultaneously, 
inter-sequence motion correction is necessary. Toward this 
end, we employed a rigid transformation based on mutual 
information [18]; we call this step co-registration. After co-
registration, all sequences acquired for a subject are registered 
to the T1 image space for that subject.

Skull stripping
We refer to the removal of non-brain tissue, such as skull and 
skin, from the image volume as skull stripping. We applied a 
deformable-model–based skull stripping algorithm [19] to the 
T1-weighted images. Since image volumes for the other MR 
sequences were co-registered to the T1 image space of that 
subject, we used the T1 image volume as a reference to skull-
strip the other sequences.

Figure 1. General workflow for training and lesion segmentation. 
Shaded rectangles represent initial or processed image data; white 
rounded rectangles represent processing steps.
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Brain-tissue segmentation
Since the elastic-registration algorithm [16] that we used 
to transform each subject to the standard space (see next 
paragraph) requires a WM/GM/CSF segmented image as 
input, we applied a segmentation algorithm based on hidden 
Markov random fields [20] to each T1-weighted volume.

Spatial Normalization and Smoothing
To register corresponding anatomic structures across subjects, 
we transformed each subject to an atlas developed by Kabani 
[21]; we refer to this coordinate space as the MNI space. 
Although the registration algorithm that we selected has been 
shown to register brain images with high accuracy, there will 
always be at least minimal misregistration [17]. Smoothing 
has been shown to ameliorate the effects of registration error 
[22]; therefore, we applied a 9-mm Gaussian kernel as in [23] 
to smooth the spatial-probability maps ( )CvLP v ∈| . 

Intensity Normalization
Due to the variations in image-acquisition hardware, 
maintenance, and software, we cannot assume that a given 
sequence will always have the same contrast and brightness. 
Compensating for these differences is particularly important 
when image data are obtained at different sites. Toward this 
end, we implemented intensity normalization by matching the 
histograms of each subject’s images to those of a selected target 
subject [24]. As the intensity information for the ACCORD-
MIND study consists of four MR sequences, we normalized 
each MR sequence separately. 

Validation Methods
We validated our approach using leave-one-out cross validation 
(LOOCV): we performed 42 experiments, in each of which 
we used manually segmented MR images from 41 subjects to 
train our method, and the images from the remaining subject 
to test segmentation. Comparing automatically segmented 
lesions to the ground truth for the test subject, we computed 
the true-positive rate (TPR) and false-positive rate (FPR) of 
our approach: 

TPTPR
TP FN

=
+

, and
 

FPFPR
FP TN

=
+

,

where TP and FP are the numbers of true- and false-positive 
voxels, and TN and FN are the numbers of true- and false-
negative voxels, respectively. 
We evaluated our algorithm using the following measures: 

ROC Curve• : Recall that the lesions segmented by our 
algorithm are in a standard coordinate space, whereas 
manually segmented lesions were in the original 
sequence (e.g., FLAIR) image space for each subject. 
To make these results comparable, we transformed the 
automatically segmented lesions from the standard 
coordinate space back into the original subject’s image 
space, applying a threshold to determine which voxels 
contained lesions after transformation. By varying this 
threshold, we obtained an ROC curve.

Similarity Index• : The similarity index (SI) is a 
commonly used metric of segmentation similarity [7]: 
 2

2
TPSI

TP FP FN
=

+ + ,          
Similarity-index computation is sensitive not only to total 
segmented-lesion volume, but also to lesion overlap [7]. 
We computed a SI curve for the LOOCV experiment by 
changing the threshold as we did when computing the 
ROC curve.

Because our data were obtained from two sites, using 
MR scanners from different manufacturers, it is important 
to determine the effects of these differences. We designed 
three experiments (T1S1, T2S1-N, and T2S1), based on three 
different training groups and one test group: 

T1S1: We randomly selected 12 of the 30 subjects from 
site 1 to train the classifier, and we tested the classifier using 
the remaining 18 subjects from that side. 

T2S1-N: We trained a classifier with all 12 subjects from 
site 2, and tested segmentation with the same 18 subjects used 
to test the T1S1 classifier. 

T2S1: We repeated the T2S1-N experiment, omitting the 
intensity-normalization step. 

RESULTS

The scatter-gram for manually segmented lesions (ground 
truth) is shown in Fig. 2. The average lesion burden is 2.05 
mL, and the standard deviation is 3.25 mL. 

Fig. 3 shows the ROC curve for the LOOCV experiment; 
the area under the ROC curve (AUC) is 0.96. The SI curve 
is shown in Fig. 4; the maximum SI is 0.596, and the 
corresponding threshold is 0.75. Fig. 5 shows the SI for each 
subject, computed using a threshold of 0.75. Note that some 
subjects have much higher SI values than others; as described 
previously [11,15], larger total lesion volumes tend to result in 
larger SI values, as seen in Fig. 6, which shows the relationship 
between SI and the relative lesion volume of each subject, 
which we define as the fraction of total brain volume occupied 
by manually segmented lesions. 

The ROC curves for the multi-site experiments are shown 
in Fig. 7. Note that the T1S1 and T2S1-N curves are almost 
indistinguishable from each other, yet are readily distinguished 
from the T2S1 curve.

To provide a visual sense of classification results of the 
LOOCV experiments, we display representative images 
containing segmented lesions, and their corresponding 
manual-segmentation results of subjects with marked, 
moderate and minimal lesion burdens, in Fig. 8, Fig. 9 and 
Fig. 10, respectively. Fig. 11 shows rendered voxelwise 
lesion-prevalence rates across all subjects for automatically 
and manually segmented lesions.

We implemented our algorithm using the C++ programming 
language, on a Silicon Graphics (Mountain View, CA) Origin 
300 workstation. Image preprocessing required approximately 
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Figure 2. Scatter-gram for manually segmented lesions. Figure 3. ROC curve for LOOCV.

Figure 4. Similarity index for LOOCV.

Figure 5. Similarity index for each subject in LOOCV.

Figure 6. Similarity index versus relative lesion volume for each 
subject.

Figure 7. ROC curves for cross-site segmentation experiments. 
“T1” or “T2” indicates trained on data from site 1 or site 2; “S1” 
or “S2” indicates tested on data from site 1 or site2; N indicates 
intensity normalization.
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260 minutes for each subject, of which the elastic-registration 
step required approximately 180 minutes. Our algorithm 
required approximately 16 minutes to compute a Bayesian 
classification model from 41 training subjects. The model-
building process required approximately 30 seconds for 
each additional training subject. Lesion detection for a new 
subject, not including preprocessing, required approximately 
4 minutes. 

DISCUSSION

Supervised versus unsupervised algorithms 
Most segmentation algorithms belong to one of two categories: 
supervised [10,15] or unsupervised classification [13,25]. 
Although unsupervised methods do not require manually 
segmented lesions as training data, these methods usually 
require more user-specified parameters than do supervised 
methods. 

Our Bayesian approach, being based on training data, and 
using Bayes’ theorem to fuse prevalence, signal-intensity, 
and spatial information, requires minimal user input. For 
lesion segmentation, our method requires no user input; only 
image preprocessing—in particular skull stripping for the T1-
weighted sequence—requires some user guidance. Because the 
transformation of detected lesions from the standard space to 
a subject’s space results in fractional rather than binary voxel 
values, the user may set a threshold for labeling transformed 
voxels as lesions, although the algorithm can apply the 
threshold that maximizes SI for training subjects. Because of 
the difficulties of brain-lesion segmentation, many methods 
[6,11,12] require user input, which precludes these methods’ 
scaling to hundreds or thousands of subjects. A fully automatic 
classification method is critical for studies involving hundreds, 
or thousands, of subjects, such as ACCORD-MIND.  

Figure 8. Automatic versus manual lesion segmentation in a 
subject with large lesion burden. (a) T1; (b) T2; (c) SD; (d) FLAIR; 
(e) automatic segmentation; (f) manual segmentation. 

Figure 9. Automatic versus manual lesion segmentation in a 
subject with moderate lesion burden. (a) T1; (b) T2; (c) SD; (d) 
FLAIR; (e) automatic segmentation; (f) manual segmentation. 
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Lesion class versus outlier detection
For brain-lesion-segmentation algorithms that are based 
on outlier detection [13,25,26], it is not necessary to model 
lesion characteristics explicitly; however, not all outliers are 
lesions [13], which will increase FPR. To remove outliers that 
are not lesions, additional constraints must be applied, which 
may differ across subjects. In contrast, we modeled lesions’ 
statistical characteristics based on training data. If necessary, it 
would be straightforward to remove the lesion class from our 
algorithm, and to detect outliers using a Bayesian approach, 
for example, by computing the joint probability of the signal-
intensity and spatial data [27,28].  

Relationship to other work
SI is one measure of how well automatic segmentation 
matches ground truth. However, larger lesion burdens increase 
SI [14,15], since a small volume of misclassification may 
constitute a large percentage of lesions when the lesion burden 
is low. This property renders SI values obtained from different 
data sets difficult to compare, unless those experiments share 
a common lesion prevalence. For example, the average 
volume of manually segmented lesions for our data set is 2.05 
mL, compared to 15.0 mL for Anbeek’s multiple-sclerosis 
segmentation research; it is not surprising that our maximal 
SI, 0.596, is smaller than the SI reported by Anbeek [15].

Although manually segmented lesions are often used 
as the ground truth to evaluate computer-aided algorithms 
[13-15], the notion of ground truth is elusive. Manual and 
automatic algorithms may differ because neither the expert nor 
the automatic method is perfectly valid or reliable. In general, 
our algorithm was more conservative in labeling lesions than 
the neuroradiologist. Based on visual inspection of the MR 
images and manual and computer-based segmentations, we 
suspect that differences between the two are primarily due to 
false-positive voxels during manual segmentation, rather than 
false-negative voxels during computer-based segmentation; 

Figure 10. Automatic versus manual lesion delineation in a subject 
with minimal lesion burden. (a) T1; (b) T2; (c) SD; (d) FLAIR; (e) 
automatic segmentation; (f) manual segmentation. 

Figure 11. Lesion-distribution map resulting from the summation of cross-validation classification of all 42 subjects. The first row is 
the map of automatically detected lesions; the second row is the map of manually segmented lesions. Green represents ventricles; red 
represents lesions; white represents cortex.



189Herskovits EH, Bryan RN, Yang F

however, there is no definitive way to prove this conjecture in 
the context of these experiments.

The spatial model that we used may require many training 
subjects if each subject has a low lesion burden. Although we 
designed our approach to support large-scale clinical research, 
we also accommodated small sample size by implementing 
an uninformative prior for the spatial model [29]. This 
initialization provides a reasonable distribution when few data 
are available for computing voxel-wise lesion prevalence, yet 
is discounted rapidly as sample size increases, yielding values 
virtually identical to observed voxel-wise prevalence when 
sample size is adequate.

Although our approach requires several image-
preprocessing steps, by separating these steps from Bayesian 
analysis, we greatly simplify comparison of competing 
registration, skull-stripping, and other image-processing 
methods, and can readily modify our software to employ those 
methods that we find to perform best for a particular study.

CONCLUSIONS

We have described the design, implementation, and evaluation 
of a Bayesian lesion-segmentation algorithm for brain images 
that synthesizes prior probabilities of class membership, 
spatial information, and multi-channel signal-intensity 
information. We used training subjects to obtain statistics for 
each segmentation class; we then used Bayesian methods to 
combine these distributions to classify images for new subjects. 
Experimental results using data from an ongoing clinical trial 
demonstrate that our approach has high accuracy, is robust 
to scanner and sequence-implementation differences, runs 
efficiently, and requires no user input for lesion segmentation. 
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