
· Advances in Medical Sciences · Vol. 53(2) · 2008 · pp 172-181 · DOI: 10.2478/v10039-008-0009-9
© Medical University of Bialystok, Poland

Integrating Data-Mining Support into a Brain-Image Data-
base Using Open-Source Components

Department of Radiology, University of Pennsylvania, Philadelphia, U.S.

Herskovits EH*, Chen R

ABSTRACT

Purpose: Previously, we described our implementation of a brain-image database (braid), based on the proprietary object-
relational database-management system (ORDBMS) Illustra [1]. In conjunction with our collaborators, we have used this
database to manage and analyze image and clinical data from what we call image-based clinical trials (IBCTs). Herein we
describe the results of redesigning braid using open-source components, and integrating support for mining image and clinical
data from braid’s user interface.
Material and Methods: We re-designed and re-implemented braid using open-source components, including PostgreSQL,
gcc, and PHP. We integrated data-mining algorithms into braid, based on PL/R, a PostgreSQL package to support efficient
communication between R and PostgreSQL.
Results: We present a sample clinical study to demonstrate how clinicians can perform queries for visualization, statistical
analysis, and data mining, using a web-based interface.
Conclusion: We have developed a database system with data-mining capabilities for managing, querying, analyzing and
visualizing brain-MR images. We implemented this system using open-source components, with the express goal of wide
dissemination throughout the neuroimaging research community.

Key words: brain-image, database, data mining

* CORRESPONDING AUTHOR:
Department of Radiology
University of Pennsylvania
3400 Spruce Street
Philadelphia, PA 19104
United States
Telephone: (215) 215-662-6865
ehh@ieee.org (Edward Herskovits)

Received 13.02.2008
Accepted 20.03.2008
Advances in Medical Sciences
Vol. 53(2) · 2008 · pp 172-181
DOI: 10.2478/v10039-008-0009-9
© Medical University of Bialystok, Poland

INTRODUCTION

One of the principal goals of the brain-image database (braid)
project is the development of the computational infrastructure
necessary to support the management and analysis of the
image-based clinical trials (IBCTs), in which medical imagery
constitutes a critical component of the data collected [1]. In
particular, braid is often used to support lesion-deficit analysis
[2], in which the primary goal is to determine associations
among locations of abnormal voxels, and outcome measures or
predisposing factors. For a particular study, lesion-deficit data
typically consist of 3-dimensional maps of subjects’ lesions,
demographics, predisposing factors, and outcomes.

We must perform two steps before we can incorporate
images into braid: we must identify, or segment, brain lesions,
and we must register the image data to a common spatial
standard. Either human experts, such as neurologists or

neuroradiologists, or computer programs, may be employed
to identify lesions. We then register the image data (including
lesions) to a common spatial standard, such as an atlas. We
employ image-warping methods, in which each voxel is
individually displaced (e.g.,[3]), for this purpose.

Once we have standardized image and clinical data,
we integrate them into our database-management system
(DBMS), to facilitate visualization and analysis of these data.
Given the complexity and volume of data obtained from a
typical IBCT, an image database is critical for management
of these data. There are three general DBMS architectures
that could be used to implement an image database: relational
(RDBMS), object-relational (ORDBMS), and object-oriented
(OODBMS) [4]. In their review of suitable DBMS architectures
for neuroimaging, Diallo et al. reported that the OODBMS
approach has disadvantages relative to an ORDBMS, such
as the former’s incompatibility with legacy DBMS data,

173Herskovits EH, Chen R

and absence of a standard [5]. Stonebraker’s four-quadrant
DBMS classification [6] supports this conclusion, suggesting
that an ORDBMS may be the best choice when managing
complex data and processing complex queries. We therefore
chose to implement braid using an ORDBMS rather than an
OODBMS or a RDBMS, because an ORDBMS would afford
the extensibility promised by an OODBMS, while maintaining
the efficiencies and standards of a RDBMS.

We initially implemented braid in Illustra; this initial
implementation allowed us to define several image data types
(e.g., binary, integer, RGB), and to support these data types with
query-accessible image-processing and statistics operators.
We subsequently used this database to manage and analyze
data from several IBCTs [1]. Although Illustra supported our
research, our reliance on a proprietary DBMS hindered our
efforts to share our software and to extend and maintain braid.
In particular, our goal of sharing our visualization software,
statistical operators for data mining, and our Bayesian data-
mining software was hindered by our reliance on a proprietary
DBMS. Therefore, we opted to re-implement braid using
open-source components.

In addition to sharing braid and its associated tools,
we have developed data-mining software that analyzes
neuroanatomic data; however, we did not integrate these tools
into braid, due to concerns about computational efficiency. One
example of such software is an application that we developed,
which performs voxel-based lesion-deficit analysis. However,
because this application is not called from braid’s interface,
our collaborators must retrieve data from braid, transform the
data into a format acceptable to this analysis software, and
then perform the analysis. This process is time-consuming and
error-prone, and became more difficult as we developed more
analysis applications. To facilitate the use of our data-mining
software, we decided to integrate these tools into braid.

The rest of this paper is organized as follows. In Section 2,
we describe the re-implementation of braid using open-source
components, including the selection of a DBMS, design of a
data model, and implementation of visualization operators. We
describe our experience of integrating data-mining software
into braid in Section 3. Section 4 provides examples of how to
use braid to support image-based clinical trials. We conclude
in Section 5.

DATABASE DESIGN

An additional, but by no means secondary, motivation
that drove the reimplementation of braid, was our desire
to overcome some deficiencies in the database design as
implemented using Illustra. For example, we modeled clinical
data by placing all data from all IBCTs into one table, where
clinical variables were represented on a record-by-record
basis: for each attribute-value pair, the attribute name was a
text value, selected from four choices: “text”, “integer”, “real”,
or “Boolean”. This design resulted in many NULL values in

this table, and caused inefficiencies during queries of, and
modifications to, the database. In addition, this design made
difficult the addition of a new IBCT to braid. To better model
these data, we utilized an inheritance approach to represent the
IBCTs included in braid. Another limitation of the previous
implementation is that spatial operations were based only on
the Talairach template space. Our reimplementation of braid
allows each IBCT to choose its own coordinate system.

Our current implementation is based on PostgreSQL,
a robust (and the only widely used) open-source ORDBMS
(http://www.postgresql.org). Almost all functions of the
structured query language (SQL) standard are implemented in
the query language of PostgreSQL as a full-function relational
database. Moreover, all object-oriented features are included
as new specific instructions or reserved keywords. The server
can handle simultaneous queries, users and databases. Several
clients and interfaces for PostgreSQL are available; we have
installed and used two interfaces, psql and pgaccess (http://
www.pgaccess.org).

Software developers extend PostgreSQL by adding
operators, usually written in C, to the system; database users and
administrators can then query a database from within a program
they have written in any of these languages. The PostgreSQL
engine allows the user to develop new components, and to
add them to the kernel as dynamically linked libraries. These
components, represented as simple functions or procedures,
may consist of SQL statements or C functions. To support
IBCTs in braid, we defined an image data type, and image and
statistical operators. Since we extended the database kernel
using dynamically linked libraries, this process did not require
recompilation of the kernel.

To facilitate sharing of braid’s source code, we decided
to use open-source components and development tools
wherever possible. In addition to the DBMS, this environment
includes the operating system, and the interface to the data.
We chose the freely available hypertext preprocessor PHP
(php: hypertext preprocessor, http://www.php.net) to generate
braid’s web pages that constitute the user-DBMS interface; as
opposed to JavaScript, PHP is a server-side HTML-embedded
scripting language, and is thus not client-dependent. We chose
the open-source web server, Apache (http://httpd.apache.
org/), to serve braid’s web site. Finally, we chose to integrate
these components under the Linux operating system (http://
www.linux.org), and to compile extensions to braid using gcc
(http://www.gnu.org/gcc). An important benefit of our choice
of open-source components is the provision for any database
administrator, through access to all source code, to construct
and to maintain a brain-image database similar to ours.

Data model
Figure 1 presents an overview of braid’s entity-relationship
(E-R) diagram. The relationships between entities are either
one-to-one or one-to-many. braid’s database consists of data
specific to each IBCT, in addition to a collection of anatomic
atlases of reference brain-image volumes that describe the

174 Integrating Data-Mining Support into a Brain-Image Database Using Open-Source Components

spatial extents of brain structures. As shown in Figure 1, we
model an atlas with two entities: ATLAS and STRUCTURE.
The ATLAS entity encodes spatial information for each atlas
included in braid [7]. The image of each atlas is color-coded
to label different structures; that is, each atlas is an integer
image. The STRUCTURE entity represents information
related to atlas-defined brain structures. The main attribute
of the STRUCTURE entity is image, which is defined as a
binary mask in a particular coordinate space. The data for the
STRUCTURE entity are extracted from color-coded atlas
images.

Three entities—STUDy, SUBJECT, and SUBJECT_
IMAGE—model subjects’ lesions, demographics, predisposing
factors, and outcomes. The STUDy entity captures information
for a particular study (e.g., study name), the SUBJECT entity
records information relevant to each individual (e.g., age), and
the SUBJECT_IMAGE entity captures information related
to each subject’s image data. This entity includes an attribute
of type image to refer to an image of a subject’s lesions. In
addition, we include an additional subject entity for each
IBCT, such as STUDy1_SUBJECT; this entity models clinical
data specific to the corresponding IBCT, whereas the generic
subject entity models subject data, such as date of entry, that
we expect to maintain for all IBCTs. We model these distinct
clinical variables by using the table-inheritance feature in
PostgreSQL.

Finally, the PIV (precomputed intersection volume) entity
connects the ATLAS and SUBJECT_IMAGE entities. PIV
contains the volume of intersection of an atlas structure with
a subject’s lesions; each intersection volume is computed off-
line to improve the efficiency of queries.

Each of braid’s entities is mapped to a table in our
extended relational-database implementation. As expected
for a relational database, every row within a table is uniquely
identifiable through the primary key for that table. We
established relationships among entities by using primary
and foreign keys that guarantee data integrity and coherence.
In addition, we created derived fields to improve query
performance; for example, we precomputed the volumes of

intersection in the precomputed-intersection-volume (PIV)
table, because computing volumes for hundreds of atlas
structures crossed with hundreds, or thousands, of subjects, is
time consuming.

To map the subclass–superclass relationship onto tables,
we represent the data for a study as a single table, in which
columns represent clinical information and each row represents
a subject. Each subject in a study has a unique identifier that
acts as a key. To incorporate data from a new IBCT, a database
administrator (DBA) need complete only four steps:

Create a new tuple for this study in the STUDy table.1.
Incorporate the basic information for the subjects of this 2.
new IBCT into the SUBJECT table, so that each subject
has a unique number that is used to identify that subject’s
clinical and image data.
Create a new table for this study’s clinical data, whose 3.
fields are the clinical variables of this particular IBCT.
Insert each subject’s image data into the 4.
SUBJECT_ NUMBER table.

Data types
Unlike image databases that store only file names and
locations of images, braid directly stores image data using
our defined data type image. PostgreSQL maintains the image
data type in binary form when queried, and thus can pass these
data efficiently to data-processing programs, such as image-
processing and statistical operators. Each defined type in
PostgreSQL corresponds to a C-language structure. The key
elements of the image data type are:

Modality (e.g., magnetic-resonance (MR), positron-1.
emission tomography (PET))
Value (e.g., Boolean, integer, RGB)2.
We use the Boolean type for an image mask that 	
represents, for example, a single atlas structure. We use
the integer type to represent a subject’s lesion image, in
which different integer values may be assigned to different
lesions to distinguish them. We use the RGB type to
represent an atlas image, in which each atlas structure is
color-coded. We implemented this image value type as a
C union, which facilitates extensibility.
Format (e.g. zyxx, raw)3.
This value indicates the format for the image data (see 	
next element). For example, the zyxx format represents a
line segment (z, y, xbegin, xend) that has a certain value (e.g.,
color, signal intensity, 0/1 binary value).
Image data4.
The image data, encoded using the format specified in the 	
previous element, are stored here.
Acquisition date5.
Voxel size in mm stored as three floats6.

Figure 1. The entity-relationship diagram for the braid schema. A
rectangle represents an entity, and a line represents a relationship
between entities. For the subclass/superclass (IS-A) relationship,
the “d” notation specifies the constraint that subclasses must be
disjoint; i.e., an entity can be a member of at most one of the
subclasses.

175Herskovits EH, Chen R

Spatial operations
To support the execution of image-based queries, we defined
and implemented a set of operators, including intersection,
sum, and threshold, for the image data type. For example, we
implemented the intersection procedure and mapped it to the
“*” operator in PostgreSQL, which can be incorporated into
any SQL statement. Similarly, we implemented the summation
procedure and mapped it to the “+” operator.

In addition to implementing image operators, we have also
implemented functions that take images as arguments; one
example is the threshold function, which allows the user to
apply different types of thresholds (integer or RGB values) to
an image. The threshold function returns an image consisting
of only those voxels satisfying the threshold criterion (all
other voxels are set to zero). Another example is the volume
function, which takes an image as its argument, and returns the
volume of that image (i.e., corresponding to non-zero voxels)
in mm3. We have also implemented functions for producing
output: save_image and generate_png. The function save_
image saves an image to a file, and the function generate_png
generates a portable network graphics (PNG) image (http://
www.libpng.org/) from braid’s internal image format.

Data security
We have implemented security primarily through access
privileges, and de-identification of subjects’ data. To protect
subjects’ privacy, our collaborating researchers strip all clinical
and image data of potential identifiers, and give each subject
a unique numerical ID, before sending the data to braid; this
ID number, in conjunction with the study name, represents a
key for that subject in the database. As an additional security
measure we incorporate into braid only the subjects’ registered
lesions, rather than the original MR images.

In addition, braid provides a user-level security model
by assigning different levels of user access managed by the
PostgreSQL server. braid’s database administrator (DBA) has
full permission on all database objects and is responsible for
all data-manipulation tasks: populating braid with new clinical
or image data, and deleting or updating any datum. The DBA
assigns for each IBCT a user or a group of users who will have
read-only access (primarily through braid’s web site) to that
study’s clinical and image data.

Data entry
braid provides a set of off-line C programs, run by braid’s
DBA, that connect to the PostgreSQL server to populate the
database with an IBCT’s image and clinical data. This process
is facilitated by psql and other database-management tools
available in PostgreSQL.

INTEGRATING ANALYTIC TOOLS
INTO braid

After image preprocessing, segmentation of lesions, and
registration to a common standard, the structural image
data, which consist of registered lesions, are inserted into
the database. For each subject, these image data, combined
with clinical variables, constitute the data to be analyzed or
visualized. With our assistance, our collaborators subsequently
analyze the data, either testing a specific hypothesis or
performing exploratory data mining. One way to perform this
task is first to extract data from the database, and then use
the standalone software to analyze these data. However, this
process is time-consuming and error-prone.

 To facilitate data mining for images and clinical data,
we have begun to integrate braid’s off-line analytic tools
into the ORDBMS. To support statistical analysis, we have
linked braid to the open-source statistical computing package
R (http://www.r-project.org/). Under this implementation, we
use the ORDBMS to manage the data, to perform queries to
select the subset of data for analysis, and to generate sufficient
statistics; R takes as input these sufficient statistics to
perform statistical analysis. We use the open-source package
PL/R (http://www.joeconway.com/plr/) to support efficient
communication between R and PostgreSQL.

To narrow down the vast array of statistical functions that
R makes available to developers, we have chosen statistical and
data-mining functions that support typical studies managed by
braid. For example, braid was originally designed to support
lesion-deficit analysis, in which an investigator’s goal is to
determine associations among locations of abnormal voxels
(or structures), and outcome measures or predisposing factors.
Since voxels and outcome measures are often categorical, we
chose to implement Fisher’s exact test.

Fisher’s exact test is computed based on a two by two
contingency table. The contingency table counts binary values
of (a) whether the state of a clinical variable for a subject
meets a specific criterion; and (b) whether a voxel is labeled
abnormal (i.e., lesion). This contingency table constitutes the
sufficient statistics for Fisher’s exact test. That is, once we
know the values in this contingency table, knowing the actual
observations contributes no further information to statistical
inference. In our implementation, PostgreSQL computes these
sufficient statistics (i.e., the contingency table), and saves them
temporarily as a table in the database. Because braid computes
sufficient statistics interactively, braid supports exploratory
data analysis, in which an investigator may frequently change
the subset of subjects included in an analysis.

We implemented a PL/R function to analyze the
contingency table generated from and transmitted by braid. In
integrating this function into braid, we enable the ORDBMS
to call R automatically to perform statistical inference, and
then return the resulting p-value to braid’s user interface.

Integrating image-processing and statistical data-mining

176 Integrating Data-Mining Support into a Brain-Image Database Using Open-Source Components

tools into braid has many benefits. First, users do not need to
know about implementation details; they submit a request for
analysis via braid’s user interface, and they obtain the results

via the same interface. This feature frees our collaborators to
focus on their research, rather than on the database. In turn,
anyone implementing a statistical or data-mining function
in R is free to change the details of that implementation, as
long as the PL/R interface remains the same. Second, we
use PostgreSQL to generate sufficient statistics; this process
is not only efficient, but also safe because PostgreSQL has
mechanisms for data integration. Third, developers benefit from
the wide variety of statistical functions already implemented
and validated in R.

USING braid

The following is an abbreviated outline of how braid is used to
support IBCTs. When creating a new study, the collaborating
principal investigator selects a coordinate system, which
usually corresponds to an atlas, and a set of clinical data to
store for each subject. The clinical collaborators send us their
image and clinical data as they are collected; the image data
contain regions of abnormal signal intensity, or lesions, which
are delineated as regions of interest. We register all image data
to the atlas originally selected for this study, and we ensure
that all potential identifiers have been removed from the data.
The database administrator incorporates these data into braid,
after quality control in conjunction with clinical collaborators.
We then assist our clinical collaborators in performing queries
for visualization, statistical analysis, and data mining, using a
web-based interface.

Figure 2. An example of a visualization query performed in braid.

Figure 3. The main entry point of the web-based interface.

177Herskovits EH, Chen R

An example IBCT: the psychiatric sequelae of
traumatic brain injury in children (PTBI)
As a motivating example of how braid assists in the management
of IBCTs, we introduce a study of the psychiatric sequelae of
traumatic brain injury in children (PTBI) [8]. The goal of this
project is to investigate the effects of traumatic brain injury,
by answering questions such as: Does the spatial pattern of
brain lesions induced by traumatic brain injury predict the
development of secondary attention-deficit hyperactivity
disorder (S-ADHD)? Accordingly, working with MR brain
images, the PTBI researchers delineate lesions that are related
to traumatic brain injury, and then send us the original MR
images, the segmented images, and the results of psychiatric
and demographic data, stripped of any information that could
uniquely identify any subject. We register each subject’s MR
images to a standard coordinate system, and use the resulting
deformation field to register that subject’s lesions.

Having incorporated these image and clinical data into
braid, we can then assist PTBI researchers in performing

queries to determine whether the spatial distribution of
lesions is associated with a particular clinical outcome. For
example, PTBI researchers can generate a visualization
query using braid’s web-based interface, to examine the
spatial distributions of lesions for subjects who developed
S-ADHD, and for subjects who did not. These queries return
axial summation images of all lesions across subjects who
developed S-ADHD; a similar query returns the equivalent set
of images for those subjects who did not develop S-ADHD.
Figure 2 shows three representative axial images from these
two visualization queries.

In addition to visual display of lesion locations across
experimental groups, we can use braid to explore statistically
associations between the spatial distributions of subjects’
lesions and the existence of S-ADHD. For example, the input
to braid’s Fisher-exact aggregate function is a table, in which
each row represents a subject, and which has two columns:
S-ADHD status (normal/abnormal) and right-putamen status
(abnormal if this structure’s volume of intersection with a

Figure 4. An example of visualizing atlas structures using braid’s web interface. Query results are presented as series of axial PNG
images. (A) The CHS atlas is shown as a color-coded composite of atlas structures. (B) The result of selecting a particular structure, the
right caudate (shown in red), overlaid on Talairach cortex (shown in blue).

178 Integrating Data-Mining Support into a Brain-Image Database Using Open-Source Components

subject’s lesions exceeds a user-supplied threshold). This
function is invoked via the following SQL statement:

SELECT fisher_exact(‘PTBI’, ‘adhd_devel’, 328, ‘=t’, 0);
The aggregate function is called fisher_exact, and has

5 input values: the name of a study; the name of a binary
clinical variable (adhd_devel indicates whether S-ADHD
has developed); the index of an atlas structure (the right
putamen in the Talairach atlas has index 328), the condition
to be applied to the clinical variable (compare cases in which
adhd_devel is true [‘t’] to those in which it is not), and the
lesion-volume threshold for labeling a structure abnormal
for a particular subject (0 implies that we consider the right

putamen to be abnormal for any subject who has a lesion that
overlaps with the right putamen by even one voxel). The result
of this query is the p-value of the Fisher-exact test, along with
the contingency table.

Clearly, it is unreasonable to expect clinical researchers
to generate SQL statements. The following section describes
braid’s web-based user interface, which allows our
collaborators and us to perform queries for visualization and
for statistical analyses, such as those described above, without
having to compose SQL statements.

USER INTERFACE
Query interface for visualization and statistical
analysis

braid provides a simple graphical user interface (GUI) that
allows users without extensive database experience to construct
and submit complex visualization and statistical queries, and
to browse the database, via a web browser. We implemented
the interface to the database as a series of web pages that are
dynamically generated by PHP.

Based on a user’s access privileges, braid presents a list of
studies, from which the user selects a study to browse; Figure 3
shows an example of this type of page. At this point, the user
may select any of the links shown, to browse a subject’s lesion
images, to build visualization query based on a combination of
image and clinical criteria, to build a simple statistical query,
or to view predefined examples of queries.

Browsing the database
As shown in Figure 4, braid allows users to view anatomic
atlases. When a user requests to view an atlas, such as that
from the Cardiovascular Health Study (CHS), braid also
provides the user with a summary description of the atlas,
based on voxel values in the corresponding image data
type, followed by representative images that contain color-
coded representations of various atlas structures, as shown in
Figure 4A. braid also provides the user with a list of structures
in that atlas. When a user selects a structure’s hyperlink, the
GUI sends the corresponding SQL query to the database. As
shown in Figure 4B, braid returns a series of axial images
demonstrating the selected structure superimposed on Talairach
cortex, which is optionally provided as a spatial reference.

braid’s GUI also provides the user the ability to view the
data for any subject in the database to which they have been
granted access, by selecting from a list of subjects. braid’s
GUI dynamically generates a SQL statement, which in turn is
sent to the PostgreSQL server. As shown in Figure 5, the result
of this query is a table of the subject’s clinical information,
followed by the subject’s images. For example, Figure 5
shows three of the clinical variables in the PTBI study: pID
(a unique patient identifier), acquired-date (the date that these
data were collected) and the Boolean variable adhd_devel,
which indicates whether that subject developed S-ADHD,
assessed 1 year after injury.

Figure 5. Clinical information for a PTBI-study subject is shown
in braid’s web interface, followed by axial slices of the subject’s
brain lesions in yellow, overlaid on Talairach cortex in blue. The
volumetric result is presented as series of axial PNG images. Only
a few clinical data and axial image levels are shown for the sake
of clarity.

179Herskovits EH, Chen R

Visualization queries
The visualization-query form (Figure 6A) allows a user to
display lesions for a group of subjects; braid then sums binary
lesion maps at each voxel location to return a 3-dimensional
integer map. First, the user selects optional atlas structures
from a menu; these structures will be superimposed on the
lesion map to provide spatial context for visualization. The
user can choose a color for each selected structure from a web
palette. A checkbox allows the user to superimpose Talairach

cortex on these structures and/or lesions, since this structure
is the one most commonly chosen in this setting. Note that
structures can be mixed from different atlases, which is one of
the advantages of requiring that image data be registered to a
common standard.

Next, the user chooses a color for displaying lesions;
as with atlas structures, the default color for lesions can be
modified easily using the supplied palette. Finally, the user
can choose to include all subjects in a particular study, or to

Figure 6. (A) braid’s web interface for constructing a visualization query. The user selects from menus of anatomical structures and
clinical variables, and specifies a subject-selection criterion. The user can color each structure, and lesions, using a palette. (B) The SQL
statement generated by braid is displayed; a user comfortable with SQL can modify the query if desired, before submitting it to braid.
The images on the right are a subset of those generated by the SQL statement on the left.

180 Integrating Data-Mining Support into a Brain-Image Database Using Open-Source Components

apply selection criteria, such as including only subjects who
developed S-ADHD (e.g., adhd_devel =’t’ in Figure 6A);
additional criteria can be added for more complex queries.

After the user has selected anatomic structures, colors,
and subject-selection criteria, and submitted this form to
the database, braid builds the corresponding SQL query
dynamically, and displays it to the user for optional editing
before submission to PostgreSQL. In this way, braid provides
users who are facile with SQL the option of modifying the
SQL statement before submitting it. Once the SQL statement is
submitted over the web to the database, braid will return images
showing the summation of subjects’ lesions superimposed on
the selected structures, as shown in Figure 6B.

The corresponding SQL statement in Figure 6B
demonstrates how we use the schema and spatial operators. As
expected, we use the ‘+’ operator for voxel-wise summation.
Each voxel in the resulting image volume corresponds to the
number of subjects for whom this voxel is abnormal. The
map_image procedure maps images to a color, and the sum_
study_lesions procedure tallies the numbers of lesions across
subjects of a particular study who meet the specified selection
criteria. To show the result of this query on a web browser,
braid converts the image volume into a series of axial PNG
images by simple typecasting, using the “::PNG” operator.

Statistical queries
braid also provides a web-based interface to basic statistical-
analysis procedures. Figure 7A shows an example of how
a user would perform Fisher-exact analysis. First, the user
selects an atlas structure, such as right Talairach putamen,
from the menu. Second, the user selects a clinical variable
for structure-function analysis; in this example, the user is
interested in determining whether the development of ADHD
is associated with the presence or absence of lesions in the
right putamen (as defined in the Talairach atlas). Because
lesion volume is a continuous variable, and Fisher exact
analysis requires binary variables, we provide a field in which
the user can enter a threshold, which converts lesion volume
into a binary (normal/abnormal) variable. In this case, if there
is any overlap (> 0 voxels), the structure is labeled abnormal
for the purposes of Fisher-exact analysis. The user submits this
form to braid over the web, and braid returns the result in a
tabular format (Figure 7B).

CONCLUSIONS AND FUTURE WORK

We have described the design, open-source implementation,
and use of braid, a system for managing, querying, analyzing
and visualizing brain MR images. We implemented braid
using an open-source object-relational DBMS, PostgreSQL,
extended to handle spatial data types and user-defined functions.
To facilitate sharing of braid’s software tools, we built braid
using open-source components such as PostgreSQL, Apache
and PHP, running on the Linux operating system. braid is
available for download from its web site (http://braid.uphs.
upenn.edu), supported by documentation for installing and
running braid.

We identified and analyzed requirements for supporting
image-based clinical trials. We introduced and implemented
the image data type, along with image-processing and
statistical operations within PostgreSQL. We have extended
the image data type to include lesion type, to facilitate lesion-
deficit analysis for different types of lesions, such as computed
tomography, MR diffusion, MR perfusion, etc.

We implemented, and integrated into braid, statistical tests
to support exploratory data-mining queries such as “compute
Fisher-exact p-values for the pair-wise combination of brain
structures and clinical conditions” for a particular study. By
linking the open-source statistics package R to braid, we have
greatly expanded the range of on-line analyses available to our
collaborators from braid’s web interface.

We plan to integrate data-mining software based on
Bayesian networks into BRAID. In our experience, these
methods are computationally tractable, and can detect
nonlinear multivariate structure-function associations. We can
accomplish this task using our source code, or the R package
called Deal, which supports generating Bayesian-network
models from data.

Figure 7. braid’s web interface for performing Fisher-exact
analysis. (A) The user selects an atlas structure and a clinical
variable, and enters a lesion-volume threshold, since Fisher-exact
analysis requires binary variables. (B) The p-value (≈ 0.02) and
the 2 x 2 table (L = lesion, D = deficit) are returned.

181Herskovits EH, Chen R

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health
grant R01 AG13743, which is funded by the National Institute
of Aging, and the National Institute of Mental Health.

REFERENCES
1. Herskovits EH. An architecture for a brain-image

database. Meth Inform Med. 2000. 39(4-5): 291–7.
2. Herskovits EH, Megalooikonomou V, Davatzikos

C, Chen A, Bryan RN, Gerring JP. Is the spatial distribution
of brain lesions associated with closed-head injury predictive
of subsequent development of attention-deficit hyperactivity
disorder? Analysis with a brain-image database. Radiol. 1999.
213(2):389–94.

3. Shen D, Davatzikos C. HAMMER: Hierarchical
attribute matching mechanism for elastic registration. IEEE
Trans Med Imaging. 2002. 21(11):1421–39.

4. Elmasri R, Navathe S. Fundamentals of Database
Systems. 3rd ed. Addison Wesley; 1999. 1009 p

5. Diallo B, Travere JM, and Mazoyer B. A review
of database management systems suitable for neuroimaging.
Meth Inform Med. 1999. 38(2):132–9.

6. Stonebraker M. Object-relational DBMSs: The Next
Great Wave. San Francisco: Morgan Kaufmann; 1996. 216 p

7. Talairach J , Tournoux P. Co-planar Stereotaxic
Atlas of the Human Brain. Thieme Medical Publishers. 1988.
122 p

8. Gerring J, Brady K, Chen A, Herskovits E, Bandeen-
Roche K, Denckla MB, Bryan RN. Premorbid prevalence of
ADHD and development of secondary ADHD after closed
head injury. J Am Acad Child Adolesc Psychiatry. 1998.
37(6):647–54.

