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An introduction to molecular targeted therapy of cancer
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ABSTRACT

The rapidly advancing elucidation of molecular targets in human cancers during the last decade has provided an excellent basis 
for the development of novel therapeutics. A huge variety of potential target structures have been identified, many of which 
are already being exploited for therapeutic purposes. This review introduces the reader into the concept of molecular targeted 
therapies, and provides some prototypic examples.
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INTRODUCTION

During the recent years, there has been an increasing and rapid 
development of molecular markers as targets for innovative 
therapeutic concepts (“Targeted Therapy”). A high number of 
molecules have become therapeutic targets already, especially 
growth factors and growth factor receptors, molecules of 
signal transduction, tumor-associated antigens, molecules 
of intracellular protein metabolism (proteasome inhibitors), 
factors regulating cell survival, cell cycle and cell death, 
and molecules associated with invasion, metastasis and 
angiogenesis. An overview on major examples for targets that 
already entered clinical trials is given in Fig. 1. Some of these 
molecular targeted compounds are not only efficient as tumor 
therapeutics, but also improve the patient’s quality of life by, 
for example, reducing pain associated with the reduction of 
bone which is true, e.g., for compounds as zoledronic acid 
[1-6]. The list of targets for molecular therapy is growing 
daily. In the following, we will select representative examples 
to illustrate the potential, but also open problems to solve of 
targeted therapy. 

REVIEW

Example for success: targeting tyrosine kinase 
receptors, for example EGF-R
There has been an impressive development of compounds 
targeted against tyrosine kinase receptors [7]. Here, targeting 
concepts directed against c-erb-B2 (HER2), such as Herceptin 
especially in breast cancers, c-Kit-targeted therapy (Gleevec) 
in Bcr/Abl-positive leukemias and GIST-tumors, VEGF/
VEGF-R-targeted compounds [8,9], and a number of 
therapeutic concepts targeting EGF-receptor (EGF-R), are 
standing out as major examples that already have led, or 
will most probably lead, to paradigm shifts in the treatment 
of major tumor diseases. With increasing numbers of clinical 
studies, a part of them having been accompanied by molecular 
translational studies, however, it becomes clear that most 
certainly the therapeutic response towards suchlike compounds 
to a considerable extent will be defined by the individual 
molecular conditions of the individual patient, the genetic- or 
population-based background of a patient, and either acquired 
or inherited peculiar characteristics and changes within the 
gene encoding the target, such as amplifications, mutations, 
or polymorphisms.

This can be illustrated, for example, by first experiences 
from clinical studies on compounds targeting the EGF-
receptor. The EGF-receptor is being overexpressed in a 
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Figure 1. Overview on major examples of molecules that have become therapeutic targets, for compounds that already have entered 
early clinical trials.

number of solid carcinomas, such as colorectal or certain 
types of lung cancers [10], and its prognostic impact has 
already been shown for these tumor entities for certain patient 
subgroups [10-12]. Binding of the ligand EGF leads to a 
dimerization either with another EGF-R-molecule, or with a 
molecule out of the Erb-B-receptor tyrosine-kinase family. 
This is followed by the phosphorylation of the intracellular 
domain, activating a number of, for example, Ras-associated 
signalling cascades that can initiate phenomena such as tumor 
cell proliferation, invasion, metastasis, or anti-apoptosis 
[5,6]. During the recent years, diverse therapeutic strategies 
targeting EGF-R have been developed. Small molecular 
compounds targeting EGF-R are directed against the tyrosine 
kinase domain of EGF-R and inhibit its activation, thereby 
inhibiting EGF-R initiated signalling [13-15]. Other EGF-
R-targeted strategies are based on antibodies [16-24], e.g., 
Cetuximab [25,26]. A number of studies already have been 
conducted especially concerning the tyrosine-kinase inhibitors 
in colorectal [10] and also lung cancer [27-30]. Especially, 
large studies in non-small cell lung cancer such as the ISEL- or 
BR21-study on 1692 or 731 patients have shown that the best 
survival and best response to therapy was observed in patient 
subgroups with Asian population background, female gender, 
adenocarcinoma, and no history of smoking. Furthermore, in 
different studies, the level of EGF-R protein expression or 
amplification of the EGF-R gene was associated with response 
to EGF-R-based therapy [31-38]. Certain studies show an 
association of certain mutations within the EGF-R gene 
with the clinical response towards small molecular EGF-R 
targeted compounds [33]. Most of these mutations have been 
found within exons 18 to 21 within the EGF-R-gene [32]. In 

addition, it has been shown that certain mutations within the 
EGF-R-gene can be associated with the development of a 
secondary resistance to therapy [32,33]. In addition, patients 
harbouring activating k-ras-mutations in non-small cell lung 
cancers most often show resistance towards EGF-R-based 
tyrosine kinase inhibitors [32]. In such cases, a combination 
with, for example-Ras-targeted compounds may be necessary 
for an individual patient. For antibodies such as Cetuximab®, 
preliminary data suggest that response might be independent of 
EGF-R-mutations, in contrast to the tyrosine kinase inhibitors. 
Therefore, an antibody-based therapy in case of secondary 
mutations could be an option. In general, an antibody-based 
therapy direct against EGF-R (Cetuximab) is already accepted 
in colorectal cancer for patients with metastasis, this especially 
in case of an irinotecan resistance [25,26]. At present, ongoing 
phase III-studies are investigating the potential of Cetuximab 
in the situation of lung cancer (e.g. Manegold C et al., the 
ongoing Gemtax IV-Study), and the FLEX-Study recently 
has shown superiority of Cetuximab with chemotherapy as 
compared to chemotherapy alone in first-line treatment of 
NSCLC (ASCO 2008). In parallel to these ongoing studies, 
first molecular translational research results, in part of them 
by our own group, implicate first potential molecular indictors 
of therapy response, and also implicate that this antibody is 
able to inhibit different steps of metastatic cascade [36]. Taken 
together, the initial results of the particular example of EGF-
R-targeted therapy illustrate that particular molecular, and 
also potentially genetic, conditions can modify and affect 
the response to targeted therapy concepts. It emphasizes the 
notion that detailed molecular analysis of the individual tumor 
in the individual patient need to accompany further studies 
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Figure 2. Apoptosis pathways. 

on molecular targeted compounds, to precisely classify the 
subgroups of patients that best respond to novel targeted 
compounds.

Example: targeting apoptosis pathways for cancer 
therapy 
Moreover, a number of strategies have been developed that 
target the apoptotic machinery in cancer cells. Apoptosis or 
programmed cell death is the cell’s intrinsic death program 
that plays an important role in various physiological and 
pathological situations and is highly conserved throughout 
evolution [39]. Tissue homeostasis is maintained by a subtle 
balance between proliferation on one side and cell death on 
the other side [40]. As a consequence, too little apoptosis 
can contribute to tumor formation, progression and treatment 
resistance [41]. Moreover, one of the most important advances 
in cancer research in recent years is the recognition that killing 
of tumor cells by anticancer therapies commonly used in the 
treatment of human cancer, e.g. chemotherapy, γ-irradiation, 
immunotherapy or suicide gene therapy, is predominantly 

mediated by initiating programmed cell death, i.e. apoptosis, 
in cancer cells [42,43]. The elucidation of signaling pathways 
involved in the regulation of apoptosis in cancer cells over 
the last decade has led to the identification of key apoptosis 
regulatory molecules that may serve as molecular targets 
for cancer therapy. In principle, apoptosis-based cancer 
therapeutics may aim at directly activating apoptosis pathways 
in cancer cells, at restoring defects in the apoptotic machinery 
or at disabling the antiapoptotic function of molecules 
involved in treatment resistance. Such strategies may open 
new perspectives to overcome apoptosis resistance in a variety 
of human cancers. Some examples how apoptosis pathways 
could be targeted for cancer therapy will be discussed in the 
following sections.

ApOpTOSIS SIGNAlING pAThWAyS
There are two principle pathways of apoptosis, the receptor or 
extrinsic and the mitochondrial or intrinsic pathway (Fig. 2) 
[43]. Stimulation of either pathway eventually fuels into 
activation of caspases, a family of cysteine proteases that act 

Apoptosis pathways can be initiated by ligation of death receptors (DR) such as CD95 or TRAIL receptors (TRAIL-Rs) by their respective 
ligands, e.g. CD95 ligand (CD95L) or TRAIL, followed by receptor trimerization, recruitment of adaptor molecules (FADD) and activation of 
caspase-8 (receptor pathway). The mitochondrial pathway is initiated by the release of apoptogenic factors such as cytochrome c, Smac or AIF 
from mitochondria in the cytosol. Apoptosis can be inhibited by Bcl-2 or by “Inhibitor of Apoptosis Proteins” (IAPs). Smac promotes apoptosis 
by neutralizing IAP-mediated inhibition of caspase-3 and -9. See text for more details.
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as common effector molecules in various forms of cell death 
[44]. Caspases are synthesized as inactive proenzymes. Once 
activated, they cleave various substrates in the cytoplasm 
or nucleus causing characteristic morphological features of 
apoptotic cell death [44]. In the extrinsinc apoptosis pathway, 
stimulation of death receptors of the tumor necrosis factor 
(TNF) receptor superfamily, e.g. CD95 (APO-1/Fas) or TRAIL 
receptors, results in activation of the initiator caspase-8, which 
in turn can directly cleave downstream effector caspases such 
as caspase-3 [45]. Also, activation of caspase-8 may link the 
receptor to the mitochondrial pathway by cleavaging Bid, a 
Bcl-2 family protein with a BH3 domain only that translocates 
to mitochondria upon cleavage to initiate a mitochondrial 
amplification loop [46]. In the mitochondrial pathway, the 
release of apoptogenic factors such as cytochrome c, apoptosis 
inducing factor (AIF), second mitochondria-derived activator 
of caspase (Smac)/direct IAP Binding protein with Low PI 
(DIABLO) or Omi/high temperature requirement protein A 
(HtrA2) from the mitochondrial intermembrane space into 
the cytosol initiates caspase-3 activation [47]. Cytochrome 
c promotes caspase-3 activation through formation of the 
cytochrome c/Apaf-1/caspase-9-containing apoptosome 
complex, while Smac/DIABLO promote caspase activation 
through neutralizing the inhibitory effects of inhibitor of 
apoptosis proteins (IAPs) [47]. Because of the potential 
detrimental effects on cell survival in case of inappropriate 
caspase activation, activation of caspases has to be tightly 
controlled. The anti-apoptotic mechanisms regulating cell 
death have also been implicated in conferring drug resistance 
to tumor cells.

ApOpTOTIC SIGNAlING mOlECUlES AS 
TARGETS FOR CANCER ThERApy
Most anticancer therapies primarily act by inducing 
apoptosis in cancer cells [48]. Accordingly, defects in 
apoptosis programs may lead to resistance of cancers to 
current treatment approaches. Since evasion of apoptosis is 
a characteristic feature of human cancers, strategies designed 
to restore defective apoptosis programs in cancer cells may 
overcome intrinsic or acquired resistance of tumor cells to 
current regimens [49]. Also, apoptosis targeted therapies may 
increase the responsive rate of tumors towards conventional 
treatments that are currently used in the clinic, e.g. chemo- or 
radiotherapy [43].

Targeting death receptors for cancer therapy
The idea to trigger death receptors in order to induce apoptosis 
in cancer cells is attractive for cancer therapy, since death 
receptors are directly linked to the cell’s intrinsic death 
machinery [50]. Death receptors are cell surface receptors 
that belong to the tumor necrosis factor (TNF) receptor gene 
superfamily [45,50,51]. These receptors exert a wide range 
of biological functions in addition to signal to cell death. For 
example, death receptors have also been implicated in the 
regulation of survival, differentiation and immune responses 

[45,50,51]. Death receptors share an intracellular domain 
called „death domain“, which transmits the death signal from 
the cell’s surface to intracellular signaling pathways. The best-
characterized death receptors include CD95 (APO-1/Fas), 
TNF receptor 1 (TNFRI), TNF-related apoptosis inducing 
ligand (TRAIL) receptor 1 (TRAIL-R1) and TRAIL-R2. 
There exists also a family of corresponding ligands of the TNF 
superfamily that comprises CD95 ligand, TNFα or TRAIL. 
Binding of death receptors by their cognate ligands or by 
agonistic antibodies leads to oligomerization and activation of 
death receptors.

The death receptor ligand TRAIL is considered as a 
promising candidate for clinical development, since TRAIL 
preferentially kills cancer cells [52]. Recombinant soluble 
TRAIL or monoclonal antibodies targeting TRAIL receptors 
TRAIL-R1 or TRAIL-R2 were reported to induce apoptosis 
in a wide range of cancer cell lines and also in vivo in several 
xenograft models of human cancers [52-54]. Interestingly, 
TRAIL-R2 antibody-based therapy was recently reported as an 
efficient strategy not only to eliminate TRAIL-sensitive tumor 
cells, but also to induce tumor-specific T cell memory that 
afforded long-term protection from tumor recurrence [55].
Since a large proportion of human cancer turned out to be 
partially or completely resistant towards monotherapy with 
TRAIL despite the expression of both agonistic TRAIL 
receptors, TRAIL-based combination therapies were 
developed. To this end, TRAIL was reported to synergistically 
interact with chemotherapy or γ-irradiation in a variety of 
cancers [56,57].

Targeting the mitochondrial pathway for cancer 
therapy
Another approach to target apoptosis pathways for cancer 
therapy is to antagonize antiapoptotic Bcl-2 family members. 
The Bcl-2 family of proteins consists of both antiapoptotic 
members, e.g. Bcl-2, Bcl-XL, Mcl-1, as well as proapoptotic 
molecules [46]. The later comprise on one side multidomain 
proteins such as Bax, Bak and Bad and on the other side BH3-
domain only molecules, e.g. Bim, Bid, Bmf, Noxa or Puma [46]. 
Bcl-2 family proteins play an important role in the regulation 
of the mitochondrial pathway of apoptosis, since they are 
involved in the control of mitochondrial outer membrane 
permeabilization [46]. There are currently two models how 
BH3-only proteins activate Bax and Bak during the course 
of apoptosis. According to the direct activation model [58], 
putative activators such as Bim and cleaved Bid (tBid) bind 
directly to Bax and Bak to trigger their activation, while BH3-
only proteins that act as sensitizers, e.g. Bad, bind to the pro-
survival Bcl-2 proteins. By comparison, the indirect activation 
model holds that BH3-only proteins activate Bax and Bak by 
binding and thus inactivating the various antiapoptotic Bcl-2 
proteins that in turn inhibit Bax and Bak [59]. Imbalances in the 
ratio of anti- versus pro-apoptotic Bcl-2 proteins may tipp the 
balance towards tumor cell survival and thus may contribute 
to tumor formation and progression. Since high expression 
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of anti-apoptotic Bcl-2 family proteins may confer resistance 
to chemo- or radiotherapy by blocking the mitochondrial 
pathway of apoptosis, there has been much interest to develop 
strategies to overcome the cytoprotective effect of Bcl-2 and 
related molecules. A prominent example of these efforts is 
the development of the small molecule antagonist ABT-737, 
which binds to the surface groove of Bcl-2, Bcl-XL and Bcl-w 
that normally interacts with the BH3 domain of Bax or Bak 
[60]. By preventing the binding of antiapoptotic Bcl-2 proteins 
to Bax or Bak, ABT-737 frees Bax and Bak to oligomerize and 
to form pores in the outer mitochondrial membrane, promoting 
the release of cytochrome c from mitochondria into the cytosol. 
Studies in cancer cell lines and preclinical models demonstrate 
that ABT-737 as single agent can trigger apoptosis in some 
susceptible cancer types, e.g. those that critically depend 
on Bcl-2 for survival [60]. In addition, ABT-737 sensitized 
cancer cells for apoptosis when combined with conventional 
chemotherapeutics [61]. Since ABT-737 targets Bcl-2/Bcl-xL 
but not Mcl-1, high expression of Mcl-1 may confer resistance 
to this novel agent. Indeed, several recent reports indicate that 
Mcl-1 represents a key determinant of ABT-737 sensitivity and 
resistance in cancer cells [62,63]. Collectively, these findings 
suggest that small molecule inhibitors of antiapoptotic Bcl-2 
family proteins may open new perspectives to reactivate the 
mitochondrial pathway of apoptosis in cancer cells.

Targeting “Inhibitor of Apoptosis proteins” (IAps) 
for cancer therapy
Another promising therapeutic strategy directed at apoptosis 
regulators is the neutralization of “Inhibitor of Apoptosis 
Proteins” (IAPs). The family of endogenous caspase inhibitors 
“Inhibitor of Apoptosis Proteins” (IAPs) comprise eight human 
analogues, i.e. XIAP, c-IAP1, c-IAP2, survivin, apollon, livin/
melanoma-IAP (ML-IAP), NAIP and ILP-2 [64]. IAPs have 
been reported to directly inhibit active caspase-3 and –7 and 
to block caspase-9 activation [64]. The role of survivin in the 
regulation of apoptosis and proliferation is more complex 
compared to other IAP family proteins, since in addition to 
regulation of apoptosis, survivin is involved in regulation of 
mitosis [65]. There is mounting evidence that cancer cells 
have an intrinsic drive to apoptosis that is held in check by 
IAPs. To this end, high basal levels of caspase-3 and caspase-8 
activities and active caspase-3 fragments in the absence of 
apoptosis were detected in various tumor cell lines and cancer 
tissues, but not in normal cells [66]. Tumor cells in contrast to 
normal cells also expressed high levels of IAPs suggesting that 
upregulated IAP expression counteracts the high basal caspase 
activity selectively in tumor cells [66].

Since IAPs are expressed at high levels in the majority 
of human cancers, they present an attractive molecular target. 
Consequently, several strategies have been developed to target 
enhanced expression of IAPs in human malignancies. For 
the design of therapeutic small molecules directed against 
X-linked inhibitor of apoptosis protein (XIAP), the binding 
groove of the BIR3 domain of XIAP, to which Smac binds to 

after its release from mitochondria, has attracted most attention 
[67]. Smac peptides that neutralize XIAP through binding to 
its BIR2 and BIR3 domains were able to promote caspase 
activation and enhanced TRAIL- or chemotherapy-induced 
apoptosis. In addition, Smac peptides even substantially 
increased the antitumor activity of TRAIL in vivo in an 
intracranial malignant glioma xenograft model, resulting in 
complete eradication of established tumors [68]. Also, XIAP 
antisense oligonucleotides exhibited potent antitumor activity 
as single agent and in combination with clinically relevant 
chemotherapeutic drugs [69,70]. Recently, IAP antagonists 
were reported to kill cancer cells by inducing autoubiquitination 
of c-IAPs, NF-κB activation, and TNFalpha-dependent 
apoptosis [71-73]. Currently, XIAP antisense oligonucleotides 
are evaluated in phase I/II clinical trials either as single agent 
or in combination with chemotherapy in advanced tumors. 
Thus, Smac agonists, low molecular weight XIAP antagonists 
or XIAP antisense oligonucleotides are promising new 
approaches to either directly engage apoptosis or to lower the 
threshold for apoptosis induction in cancer cells.

The challenge of today: defining the right patients 
for the right therapeutic concept
The examples given above illustrate the high and promising 
potential of molecular targeted therapy. However, they also 
illustrate the increasing importance of including molecular 
diagnosis to achieve an appropriate patient selection for 
therapy. An increasing attention is begin given to the field of 
pharmacogenomics, which investigates the genetic conditions 
of patients defining a particular type of response to certain 
therapeutics [71]. For example, there is increasing evidence 
that genetic polymorphisms which, under normal conditions, 
are not relevant for a disease or a phenotype, can significantly 
modify the response to certain types of therapies, for 
example cytochrome p450-dependent substances [74]. Such 
polymorphisms can also influence the response not only to 
novel molecular targeted therapies, but also classical chemo- 
or radiation therapy. Prominent examples for this notion are 
certain enzymes involved in DNA-repair mechanisms. For 
example, certain polymorphisms within the XRCC3-gene 
(X-ray repair cross complementing group 3) have been shown 
to be associated with a significantly longer survival following 
Cisplatinum/Gemcitabine-based therapy in non-small cell lung 
cancer, as compared to Cisplatinum/Docetaxel-based therapy. 
The survival benefit resulting from these polymorphisms 
was observed especially in young patients with non-small 
cell lung cancer [75]. The consequence out of such a study 
would be that younger patients with non-small cell lung cancer 
harbouring particular polymorphisms of the XRCC3-gene 
would be treated with Cisplatinum/Gemcitabine rather than 
Cisplatinum/Docetaxel. In another study [76], it was shown 
that a particular polymorphism of the ERCC1-gene (excision 
repair cross complementing group 1), ERCC1-8092A/A, 
defines a particularly poor survival following treatment with 
Cisplatinum/Docetaxel. ERCC1 is an important enzyme 
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conducting nucleotide-excision DNA-repair that is known to 
remove DNA-adducts following Cisplatinum-based therapy. 
Certain ERCC1-polymorphisms affect ERCC1-expression, 
and it has been shown that NSCLC-patients with low ERCC1-
expression respond better to Cisplatinum-based therapy than 
patients with high ERCC1 [77]. 

These are only two out of many recent examples 
illustrating that genetic polymorphisms within DNA-repair 
relevant for metabolizing DNA-changes following particular 
types of chemotherapy can significantly modify the therapeutic 
response of tumor patients towards classical therapy concepts. 
They illustrate that pharmacogenomics will be of increasing 
importance for optimizing therapeutic compounds towards the 
individual genetic and molecular conditions of an individual 
tumor patient in the future. Certainly, novel generations 
of targeted therapy strategies also will increasingly have 
to consider particular molecular or genetic variations and 
changes within patients for a further significant improvement 
of therapy response and survival of cancer patients. Therefore, 
individual genetic or inherited conditions that by themselves 
might not be causative for a disease, will become increasingly 
important even for sporadic types of cancers, and for the 
therapy of tumors with a non-familiar background.

CONClUSION

Over the last two decades, the elucidation of molecular 
conditions, among them being signal transduction pathways 
involved in the regulation of tumor growth, cell death in 
human cancers, or molecular markers of cancer progression, 
have provided the fundamental basis for the development 
of molecular targeted therapies. Since such strategies are 
specifically directed against key components that are crucial 
for the cancer cell’s survival and function, they may be 
more selective and effective in killing malignant over non-
malignant cells. While several approaches have already been 
translated into medical application, many concepts have still 
to be evaluated in (pre)clinical trials. Another main goal 
ahead with molecular targeted therapies will be considering 
the appropriate patient selection to enrich for a responsive 
population. Eventually, these efforts are expected to yield 
more effective yet less toxic treatment options for the sake of 
patients suffering from cancer.
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