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Abstract

Summary receiver operating characteristics (sROC) analy-
sis is a recently developed statistical technique that can be 
applied to meta-analysis of diagnostic tests. This technique can 
overcome some of the limitations associated with pooling the 
sensitivities and specificities of published studies. The sROC 
curve is initially constructed by plotting the sensitivity (true 
positivity) and false positivity (1 – specificity) of each study. 
After mathematical manipulation of the true and false positivi-
ties, linear regression is performed to calculate the slope and 
y-intercept. These coefficients are then entered into the sROC 
equation to generate the sROC curve. There are three com-
monly used methods to assess the accuracy of the test: the exact 
area under the curve (AUC) for the sROC function, the homoge-
neous AUC, and the index Q*. Statistical formulas can compare 
these values from different diagnostic tests. With the introduc-
tion of sROC software and better understanding of this method, 
the application of sROC analysis should continue to increase.
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Introduction

New diagnostic tests are continuously being introduced 
in medicine. Clinical trials usually attempt to demonstrate the 

superiority of a new test by comparing its sensitivity and spe-
cificity to a conventional test. In many cases, published studies 
comparing diagnostic tests may have inconclusive or conflict-
ing results. A meta-analysis of the published studies can be use-
ful in evaluating these comparisons. Most meta-analysis studies 
of diagnostic tests generally provide a pooled estimate of the 
sensitivity and specificity. Recently, meta-analysis studies 
have begun to use summary receiver operating characteristics 
(sROC) analysis. This method consists of constructing a re-
ceiver operating curve from published studies that have deter-
mined the sensitivity and specificity of a test. The sROC curve 
can then be evaluated by a variety of statistical techniques. As 
many clinicians are unfamiliar with sROC analysis, the purpose 
of this review is to summarize the principles involved in this 
technique. Although the authors are gastroenterologists and the 
hypothetical example relates to colonic polyps, the concepts 
apply to most tests in clinical medicine. 

Limitations of sensitivity and specificity

The statistical technique for pooling sensitivities and specifi-
cities generally consists of weighing these rates by the inverse 
of their variance, summing the weighted rates, and dividing this 
sum by the sum of the inverses of their variance [1-3]. While 
pooled estimates of sensitivity and specificity are useful, they 
have a variety of limitations. First, sensitivity and specificity 
represent a trade-off as the threshold changes. By loosening 
the criteria (i.e., generally lowering the threshold), a test will 
become more sensitive but less specific. Raising the threshold 
will make a test more specific but less sensitive. Furthermore, 
sensitivity and specificity by themselves do not provide an 
overall evaluation of the accuracy of a test. For example, one 
may wish to compare two tests, one with a sensitivity and spe-
cificity both equal to 90% and the other with a sensitivity of 
98% and a specificity of 80%. It is difficult to determine which 
one is more accurate from these characteristics. 
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In addition, pooling the sensitivities and specificities from 
multiple studies can occasionally result in a distorted estimate 
[4,5]. In a hypothetical example shown in Fig. 1, three radio-
logists are asked to determine whether filling defects seen on 
computed tomographic (CT) colonography represent polyps 
or artifacts. The radiologists classify the findings using the fol-
lowing scale: likely polyp, probable polyp, probable artifact, 
and likely artifact. All three of these radiologists have identical 
skills in visual perception and their samples of polyps are simi-
lar. When evaluating the ten endoscopically confirmed polyps, 
each one independently reports identical results as follows: 
likely polyp (n=1), probable polyp (n=8), and probable artifact 
(n=1). When evaluating the ten endoscopically confirmed arti-
facts, each one independently reports identical results as fol-
lows: likely artifact (n=1), probable artifact (n=8), and probable 
polyp (n=1). The radiologists are then asked to select a thre-
shold and then report their results using a dichotomous scale: 
polyp or artifact. The first radiologist uses a threshold that 
maximizes the correct classification, resulting in a sensitivity of 
90% and a specificity of 90% (Fig. 1A). The second radiologist, 
concerned about the legal consequences of a missed polyp, will 
diagnose a lesion as a polyp even it appears to be a probable 
artifact. The overly anxious radiologist will then report a sen-
sitivity of 100% and a specificity of 10% (Fig. 1B). A third 
radiologist is more cavalier, believing that most polyps rarely 
progress to cancer. In order to minimize the number of colono-
scopies being performed at his hospital, he will only diagnose 
a polyp on CT colonography if it has the appearance of a definite 
polyp. He then reports a sensitivity of 10% and a specificity of 
100% (Fig. 1c). Using the statistical methods for pooling rates 
[1-3], the pooled sensitivity and specificity will both be equal to 
67% (95% confidence intervals: 47-83%). These pooled values 
represent a distortion from the optimal sensitivity and specifi-
city (both equal to 90%) that one would have obtained using an 
appropriate threshold. Analogous to Gresham’s law of currency 
(“bad money drives good money out of circulation”), bad stud-
ies are able to distort good studies in a statistical pooling of 
sensitivity and specificity.

Advantages of sroc

In contrast, meta-analysis using sROC analysis will gene-
rate a composite statistic that reflects the discriminating abil-

ity of a diagnostic test. A traditional ROC curve plots the true 
positivity (sensitivity) as a function of false positivity (equal to 
1-specificity) of a test at different thresholds [6]. In sROC analy-
sis, one first plots the sensitivity and false positivity for each 
study [7]. A sROC curve is then constructed to fit these points. 
The area under the sROC curve is then determined to assess 
the discriminating ability. An area under the curve (AUC) close 
to 1.0 signifies that the test has almost perfect discrimination 
while an AUC close to 0.5 suggest poor discrimination [6]. An 
AUC significantly less than 0.5 would indicate that the criteria 
for “normal” and “abnormal” should be reversed. This scoring 
system is analogous to that of a true-false test. A student who 
knows all of the answers would score 100% while a student 
who knows none of the material should be able to score 50% 
by random guessing. A score significantly less than 50% would 
suggest an aberrant testing technique (e.g., confusing the sym-
bols for true and false). 

Many clinicians have not been well acquainted to sROC 
analysis for several reasons. This statistical technique is rela-
tively new, having first been described in 1993 [7]. In addi-
tion, there have been relatively few published review articles 
which attempt to explain the mathematical techniques to most 
clinicians. Finally, many commonly used statistical software 
packages do not currently include sROC analysis. On the 
other hand, the techniques for performing sROC analysis are 
not complicated. The techniques include transformation using 
logarithms, linear regression, curve fitting, and understanding 
the relationship between integration and the area of the curve. 
These mathematical techniques are taught in most pre-medical 
school curriculums. Thus, sROC analysis should be accessible 
for most clinicians. In addition, sROC software is available to 
simplify the process.

Method of sroc

The sROC curve is a plot of the true positive rate (sensitiv-
ity) as a function of the false positive rate (1-specificity). The 
sROC equation is as follows:

where TPR is the true positive rate, FPR is the false posi-
tive rate, and a and b are coefficients which need to be deter-

Figure 1. Three radiologists are evaluating the ability of CT colonography to discriminate polyps vs artifacts. In panel A, the first 
radiologists selects a threshold to optimize discrimination, resulting in a sensitivity and specificity both equal to 90%. In Panel B, the 
second radiologist selects a threshold to avoid missing polyps, resulting in a sensitivity of 100% and a specificity of 10%. In panel C, the 
third radiologist selects a threshold to minimize false positives, resulting in a sensitivity of 10% and a specificity of 100%
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mined in order to fit the sROC curve [8]. At a first glance, the 
equation appears to be too daunting for a simple curve fitting 
technique. Nevertheless, Moses et al. [7] proposed a method 
that is relatively straightforward. The diagnostic characteris-
tics of each study (i.e., true positivity and false positivity) can 
be transformed to other variables and then fitted using linear 
regression. As shown in Tab. 1, one first has to determine the 
number of true positives, false negatives, true negatives, and 
false positives for each study. One then has to calculate their 
sensitivity (true positives/number of patients with disease), spe-
cificity (true negatives/number of patients without disease), and 
false positive rate (1-specificity). If any study has a sensitivity 
or specificity that is either equal to 0 or 1.0, a continuity correc-
tion is required. Moses et al. [7] suggests adding 0.5 to all of the 
four cells of Tab. 1 for all included studies.

One has to then transform the true positive rate (TPR) and 
false positive rates (FPR) into their corresponding logits. The 
logit of the true positive rate is the natural log of [TPR/(1-TPR)] 
while the logit of the false positive rate is the natural log of 
[FPR/(1-FPR)]. If the values for the TPR or FPR are either 
0 or 1, the continuity correction will prevent obtaining an 
undefined value which would either occur by dividing by zero 
or taking the natural log of zero. One then calculates two param-
eters, D and S. D is defined as the difference of the logits (logit 
TPR - logit FPR) while S is defined as the sum of the logits 
(logit TPR + logit FPR). These transformations can be readily 
calculated using spreadsheet software by specifying the equa-
tions. Alternatively, many sophisticated statistical packages 
permit users to develop short programs for custom transforma-
tion of variables. Tab. 2 illustrates the transformations of true 
and false positive rates using the example of the three radiolo-
gists. 

These transformations will facilitate constructing the sROC 
curve using linear regression. A linear model using these trans-
formed variables (D and S) can be constructed as follows: 

in which coefficients a and b are the y-intercept and slope, 
respectively. It can be mathematically shown that the coeffi-
cients a and b are identical to those in the sROC equation. These 
coefficients can be determined by performing linear regression 
using D as the dependent variable and S as the independent 
variable. Using the example of the three radiologists, coeffi-
cient a (the y intercept) is 2.03 while coefficient b (the slope) is 
0 (shown in Fig. 2). The standard errors of coefficients a and b 
are 1.18 and 0.29, respectively.

One can construct the sROC curve by substituting the 
values for coefficients a and b into the sROC function (equa-
tion 1) and then plotting the true positive rate over the range 

Table 1. Diagnostic characteristics of a test

Patients with disease Patients without disease
Abnormal test True positives False positives
Normal test False negatives True negatives
Total Number of patients with disease Number of patients without disease

Table 2. Transformation of the sensitivities and specificities in order to construct the sROC curve using linear regression1

Study
Sensitivity
(true posi-
tive rate)

Specificity

False posi-
tive rate

(1-specifi-
city)

corrected
sensitivity
(true posi-
tive rate)2

corrected
false posi-
tive rate2

Logit of the 
true posi-
tive rate 
(TPR)3

Logit of the 
false posi-
tive rate 
(FPR)4

D
(logit TPR

- logit FPR)

S
(logit TPR 

+ logit 
FPR)

Optimal
radiologist

9/10 
(0.9)

9/10
 (0.9)

1/10 
(0.1)

9.5/11
(0.86)

1.5/11
(0.14)

1.85 -1.85 3.69 .00

Anxious
radiologist

10/10
 (1.0)

1/10
 (0.1) 9/10 (0.1) 10.5/11

(0.95)
9.5/11
(.86)

3.04 1.85 1.20 4.89

Cavalier
radiologist

1/10
(0.1)

10/10
(0.0)

10/10
(1.0)

1.5/11
(0.14)

0.5/11
(0.05) -1.85 -3.04 1.20 -4.89

1 – Number in parenthesis indicate rate; 2 – The rates were corrected by adding 0.5 to the numerator and 1.0 to the denominator; 3 – The logit 
of the true positive rate is the natural log of [true positive rate/(1-true positive rate)]; 4 – The logit of the false positive rate is the natural log of 
[false positive rate/(1-false positive rate)]

Figure 2. Linear regression of the transformed D and S 
variables from the hypothetical study of the three radiologists. 
D is defined as the difference of the logit of the true positive 
rate and the logit of the false positive rate. S is defined as the 
sum of the logit of the true positive rate and the logit of the false 
positive rate. The y-intercept, also known as coefficient a, is 
2.03±1.18 while the slope, also known as coefficient b is 0±0.29. 
The sroc curve can be generated by plugging in the values for 
coefficients a and b in the sROC equation
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of false positive values from 0 to 1.0. This can be facilitated 
by using a sophisticated graphing program which allows one 
to enter complex formulas and their coefficients or parameters 
(e.g., Sigma Plot for Windows version 8; SPSS Inc., Chicago, 
Illinois). Coefficient a (the y-intercept), is a measure of the 
diagnostic odds ratio and is related to how far the peak of the 
sROC curve approaches to its ideal position, the upper left hand 
corner [8,9]. If the coefficient a is very large, the sROC curve 
will approximate the shape of two lines forming a right angle 
in the upper left hand corner (shown in Fig. 3A with coefficient 
a equal to 100). The area under this curve will be close to 1.0 
and the test will have a high degree of discrimination. In con-
trast, if coefficient a is close to 0, the sROC curve will assume 
the shape of 45 degree line (shown in Fig. 3B) [4,8]. The area 
under this curve is 0.5 and the test will have poor discriminat-
ing ability. Coefficient b (i.e., the slope of the regression line) 
will affect the shape of the sROC curve. If coefficient b=0, the 
sROC curve will be symmetrical (shown in Fig. 4A). If coef-
ficient b is significantly less than or greater than zero, the sROC 
curve will be markedly asymmetric (shown in Fig. 4B and 4c) 
[8]. The sROC curve of the example of the three radiologists is 
shown in Fig. 5.

Once the sROC curve has been constructed, there are three 
methods to assess the discriminating ability of the test: the exact 
AUC, the homogeneous AUC, and the index Q* [8]. How-
ever, an exact calculation of the AUC for an sROC curve can 
be somewhat complicated. In many situations, the area under 
a curve can be calculated by integrating the function. However, 
the general sROC function (equation 1) cannot be integrated 
using calculus. Thus, the exact AUC needs to be determined 
by numerical integration [8] in which the sROC curve is bro-
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Figure 3. Comparison of two sROC curves. Panel A shows an sROC curve constructed assuming that coefficient a is 100 and coefficient 
b is 0. The curve approximates a right angle with an AUC near 1, signifying high discriminating ability. Panel B shows an sROC curve 
constructed assuming that coefficient a and b are zero. The curve is a 45 degree straight line with an AUC equal to 0.5, signifying poor 
discriminating ability

Figure 4. Comparison of three sROC curves. All three curves assume that coefficient a equals 2. Panel A shows an sROC curve 
constructed assuming that coefficients b equals 0, resulting in a symmetric shape. An sROC curve with coefficient b equals 0 is called 
the homogeneous case and has properties that make the AUC easier to calculate. Panels B and C assume the coefficient b is -0.5 and 0.5, 
respectively. These curves have an asymmetric shape and their exact AUCs are more complicated to calculate
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ken up into very small rectangles or trapezoids (depending on 
the algorithm being used). Mathematical software programs 
such as Mathcad (MathSoft, Inc., Cambridge, MA), Mathe-
matica (Wolfram Research, Inc., Champaign, IL), and Maple 
(MapleSoft, Waterloo, Ontario) can readily perform numerical 
integration of most functions. Walter [8] also provided the for-
mulas for calculating the standard error of the exact AUC. This 
calculation also involves numerical integration and using the 
standard errors of the coefficients a and b and their covariance. 
These three terms are generally provided by by many statisti-
cal programs that perform linear regression. In the hypothetical 
example of the three radiologists, the exact AUC is 0.80 with 
a standard error of 0.01.

A simpler method for estimating the AUC was also pro-
vided by Walter [8]. Most sROC curves of clinical tests have 
a coefficient b close to zero. In mathematical models in which 
one assumes that one of the coefficients is zero, the example 
is then called the homogenous case. In the homogenous case 
of the sROC function, one assumes that coefficient b=0. The 
sROC equation can then be simplified to: 

This function can be integrated with respect to FPR using 
standard calculus techniques, resulting in the following equa-
tion for the area under the homogeneous sROC curve:

Homogeneus 

The standard error of the homogeneous AUC [SE (homog-
enous AUC)] was shown by Walter [8] as follows:

where SE (a) is the standard error of coefficient a (i.e., the 
y-intercept). This value is generally provided by most statistical 
programs that perform linear regression. While these formulas 
are tedious to calculate by hand, they are much easier to com-
pute than numerical integration. The homogenous AUC will be 
very close to the exact AUC in cases in which coefficient b is 
close to zero. When coefficient a=0, equation 3 will degenerate 
into an undefined value. Using an alternative formula, Walter 
[8] showed that the AUC of this case is equal 0.5. 

TPR =                                           (3)
ea ×(FPR/(1-FPR))

1+ea×(FPR/(1-FPR))

AUC =                                           (4)
ea ×(ea-1-a)
(ea-1)2

Figure 5. The sroc curve summarizing the diagnostic 
characteristics of the three radiologists. The true and false 
positivities of each radiologist are plotted using a triangle, ▼. 
The exact and homogenous AUC are both equal to 0.80±0.01. 
The “identity line” corresponds to the point in which sensitivity 
(true positivity) equals specificity (1 - false positivity). Index 
Q* can be visualized as the intersection of the sroc curve 
and the “line of identity”. The point of intersection is shown as 
a closed circle, ●. Index Q* corresponds to the value of the true 
positivity at the point of intersection (shown as a horizontal line 
projecting from the point of intersection to the y-axis) 
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Figure 6. comparison of a test with good discrimination 
(Panel A) with a test with poor discrimination (Panel B). Three 
hypothetical studies of the “good” test (shown in Panel A) have 
reported the following pairs of sensitivities and specificities: 
90% and 88%, 98% and 85%, and 88% and 97%. The test’s 
sroc curve and the points for the true and false positivities 
(using a triangle, ▼) are plotted in Panel A. The exact and 
homogeneous AUCs are both equal to 0.97±0.01. Index Q* 
corresponds to the point of intersection of the sroc curve 
and the “line of identity”. The value for index Q*, 0.93±0.02, 
corresponds to the true positivity of the intersection (shown as 
a horizontal line projecting from the point of intersection to the 
y-axis). The exact AUC, homogeneous AUC, and index Q* are 
all close to 1, the value for a test with perfect discrimination. 
Three hypothetical studies of the “poor” test (shown in Panel 
B) have reported the following pairs of sensitivities and 
specificities: 40% and 60%, 30%, and 75%, and 70% and 
30%. The test’s sROC curve and the points for the true and 
false positivities (using a triangle, ▼) are plotted in Panel B. 
The exact and homogeneous AUCs are both equal to 0.51±0.01. 
The index Q*, the point of intersection of the sROC curve and 
the “line of identity” is also equal to 0.51±0.01. These values are 
close to 0.5, signifying that the test has poor discrimination
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comparing two sroc curves

The AUC of two sROC curves can be statistically com-
pared using a formula provided by Hanley and McNeil [10] for 
evaluating tradition ROC curves:

                                                                        (6)

where z is the z statistic, AUC1 and AUC2 are the area 
under the sROC curves of the two tests, and SE(AUC1) and 
SE(AUC2) are their standard errors. The p value for the z statistic 
can be determined by using a z table or an internet-based cal-
culator.

Another method for assessing the accuracy of an sROC 
curve is the index Q*. This method is less intuitive to clini-
cians than AUC but is easier to calculate. The index Q* cor-
responds to the upper most point on the sROC curve in which 
true positivity (or sensitivity) equals specificity [7,8]. This can 
be shown graphically by drawing a “line of identity” in which 
true positivity = specificity on the sROC graph. As the x-axis on 
the sROC curve is the false positivity, one has to transform the 
variable specificity to 1-false positivity. Thus, the appropriate 
equation for this “line of identity” would be true positivity =1 
– false positivity. This line would have a y-intercept of 1 and a 
slope of -1. Graphically, the index Q* corresponds to the value 
of the true positive rate at the point of the intersection of the 
sROC curve and the “line of identity” (shown in Fig. 5). A test 
close to ideal has an sROC curve that approximates a right 
angle; therefore, it would intersect the “line of identity” close 
to the upper left hand corner, resulting in an index Q* close to 
1 (shown in Fig. 6A). In contrast, a test of poor discriminatory 
ability has an sROC curve that approximates a diagonal line. 
It would intersect the “line of identity” near their mid-points, 
resulting in an index Q* close to 0.5 (shown in Fig. 6B). The 
index Q* can also be calculated using the formula described by 
Moses et al. [7] and Walter [8]:

The formula for the standard error of the index Q* is as 
follows:

 where  is the standard error of coefficient a (y-intercept).

The index Q* values of two tests can be statistically com-
pared using a formula analogous to that of AUC as described 
by Moses et al. [7]:

where z is the z statistic, index Q1* and index Q2* are the 
index Q* for test 1 and test 2, respectively, and SE(index Q*1) 
and SE(index Q*2) are their corresponding standard errors.

The following example will illustrate how sROC can be 
used to compare two hypothetical tests. The first test has good 
discrimination as three studies have reported the following 
pairs of sensitivities and specificities: 90% and 88%, 98% and 

85%, and 88% and 97%. After applying linear regression, coef-
ficients a and b are computed to be 5.08±0.65 and 0.06±0.43, 
respectively. Fig. 6A shows the sROC curve constructed using 
these coefficients. The exact and homogeneous AUCs are both 
equal to 0.97±0.01. These values are close to 1, suggesting that 
the test has nearly perfect discrimination. The point of intersec-
tion of the sROC curve and the “line of identity” has a true 
positivity (or sensitivity) equal to 0.93±0.02 which corresponds 
to the index Q*. The second test has poor discrimination as 
three studies have reported the following pairs of sensitivities 
and specificities: 40% and 60%, 30%, and 75%, and 70% and 
30%. The coefficients a and b are 0.06 ±0.08 and -0.06±0.05, 
respectively. Fig. 6B shows the sROC curve constructed using 
these coefficients. The exact and homogenous AUCs are both 
equal to 0.51±0.01. Index Q* for this test (shown in Fig. 6B) 
is equal to 0.51±0.01. All of these values are close to 0.5, the 
value for a worthless test. Statistical comparisons of the exact 
and homogeneous AUCs result in a z-test of 25 (p<0.0001). 
Statistical comparisons of their index Q* result in a z-test of 
17 (p<0.001).

Software has been developed in order to facilitate sROC 
analysis. Meta-test is a DOS based program that was developed 
by Dr. Joseph Lau at New-England Medical Center in Boston 
[11,12]. Meta-DiSc is a Windows based program that uses 
a graphic interface that was developed at the Clinical Biostatis-
tics Unit at the Ramón y Cajal Hospital in Madrid [13]. 

Use of sROC

From 1995 to June 2007, approximately 180 published arti-
cles have discussed sROC analysis (SilverPlatter’s MEDLINE, 
Ovid Technologies, New York). Furthermore, the number of 
papers has increased in the last 5 years. Published studies which 
used sROC analysis have evaluated CT colonography for polyp 
detection [14,15], diagnostic tests for hepatocellular carcinoma 
[16], diagnosing intravascular device-related bloodstream 
infection [17], ultrasonography for temporal arteritis [18], heli-
cal CT scans for diagnosing pulmonary embolism [19,20], and 
stress tests for risk stratification of coronary artery disease [21]. 
It is the hope of the authors that this paper will further familiar-
ize clinicians with the principles of sROC analysis and further 
increase its application.
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